This paper has constructed two kinds of atomic and electronic models for hexagonal β-Mo2C and orthorhombic α-Mo2C. The optimized lattice parameters, elastic constant matrixes and overlap population for Mo2C crystal ...This paper has constructed two kinds of atomic and electronic models for hexagonal β-Mo2C and orthorhombic α-Mo2C. The optimized lattice parameters, elastic constant matrixes and overlap population for Mo2C crystal cells have been obtained to realize the characterization of the hardness and melting point of the two structures by the first-principles plane wave pseudo potential method based on the density functional theory. The results reveal that the calculated lattice parameters of the Mo2C crystal cells agree with the experimental and other calculated data. The calculated melting point/hardness are 2715 K/11.38 GPa for β-Mo2C and 2699 K/10.57-12.67 GPa for α-Mo2C, respectively. The calculated results from the density of states (DOS) demonstrate that the hybridization effect between Mo-3d and C-2p states in α-Mo2C crystal cell is much stronger than that in β-Mo2C one.展开更多
Sensing coverage is a fundamental design issue in wireless sensor networks(WSNs),while sensor scheduling ensures coverage degree to the monitored event and extends the network lifetime.In this paper,we address k-cover...Sensing coverage is a fundamental design issue in wireless sensor networks(WSNs),while sensor scheduling ensures coverage degree to the monitored event and extends the network lifetime.In this paper,we address k-coverage scheduling problem in dense WSNs,we maintain a connected k-coverage energy efficiently through a novel Hard-Core based Coordinated Scheduling(HCCS),in which hardcore is a thinning process in stochastic geometry that inhibits more than one active sensor covering any area redundantly in a minimum distance. As compared with existing coordinated scheduling,HCCS allows coordination between sensors with little communication overhead.Moreover,due to the traditional sensing models in k-coverage analysis is unsuitable to describe the characteristic of transmit channel in dense WSNs,we propose a novel sensing model integrating Rayleigh Fading and Distribution of Active sensors(RFDA),and derive the coverage measure and k-coverage probability for the monitored event under RFDA. In addition,we analyze the influence factors,i.e. the transmit condition and monitoring degree to the k-coverage probability. Finally,through Monte Carlo simulations,it is shown that the k-coverage probability of HCCS outperforms that of its random scheduling counterpart.展开更多
In this paper, we first reformulate the max-min dispersion problem as a saddle-point problem. Specifically, we introduce an auxiliary problem whose optimum value gives an upper bound on that of the original problem. T...In this paper, we first reformulate the max-min dispersion problem as a saddle-point problem. Specifically, we introduce an auxiliary problem whose optimum value gives an upper bound on that of the original problem. Then we propose the saddle-point problem to be solved by an adaptive custom proximal point algorithm. Numerical results show that the proposed algorithm is efficient.展开更多
文摘This paper has constructed two kinds of atomic and electronic models for hexagonal β-Mo2C and orthorhombic α-Mo2C. The optimized lattice parameters, elastic constant matrixes and overlap population for Mo2C crystal cells have been obtained to realize the characterization of the hardness and melting point of the two structures by the first-principles plane wave pseudo potential method based on the density functional theory. The results reveal that the calculated lattice parameters of the Mo2C crystal cells agree with the experimental and other calculated data. The calculated melting point/hardness are 2715 K/11.38 GPa for β-Mo2C and 2699 K/10.57-12.67 GPa for α-Mo2C, respectively. The calculated results from the density of states (DOS) demonstrate that the hybridization effect between Mo-3d and C-2p states in α-Mo2C crystal cell is much stronger than that in β-Mo2C one.
基金supported by the National Science Foundation of China under Grant 61271186
文摘Sensing coverage is a fundamental design issue in wireless sensor networks(WSNs),while sensor scheduling ensures coverage degree to the monitored event and extends the network lifetime.In this paper,we address k-coverage scheduling problem in dense WSNs,we maintain a connected k-coverage energy efficiently through a novel Hard-Core based Coordinated Scheduling(HCCS),in which hardcore is a thinning process in stochastic geometry that inhibits more than one active sensor covering any area redundantly in a minimum distance. As compared with existing coordinated scheduling,HCCS allows coordination between sensors with little communication overhead.Moreover,due to the traditional sensing models in k-coverage analysis is unsuitable to describe the characteristic of transmit channel in dense WSNs,we propose a novel sensing model integrating Rayleigh Fading and Distribution of Active sensors(RFDA),and derive the coverage measure and k-coverage probability for the monitored event under RFDA. In addition,we analyze the influence factors,i.e. the transmit condition and monitoring degree to the k-coverage probability. Finally,through Monte Carlo simulations,it is shown that the k-coverage probability of HCCS outperforms that of its random scheduling counterpart.
文摘In this paper, we first reformulate the max-min dispersion problem as a saddle-point problem. Specifically, we introduce an auxiliary problem whose optimum value gives an upper bound on that of the original problem. Then we propose the saddle-point problem to be solved by an adaptive custom proximal point algorithm. Numerical results show that the proposed algorithm is efficient.