在自动驾驶应用场景下,将YOLOv5应用于目标检测中,性能较之前版本有明显的提升,但在高运行速度情况下检测精度仍不够高,本文提出一种基于改进YOLOv5的车辆端目标检测方法.为解决训练不同数据集时需手动设计初始锚框大小,引入自适应锚框...在自动驾驶应用场景下,将YOLOv5应用于目标检测中,性能较之前版本有明显的提升,但在高运行速度情况下检测精度仍不够高,本文提出一种基于改进YOLOv5的车辆端目标检测方法.为解决训练不同数据集时需手动设计初始锚框大小,引入自适应锚框计算.在主干网络(backbone)添加压缩与激励模块(squeeze and excitation,SE),筛选针对通道的特征信息,提升特征表达能力.为了提升检测不同大小物体时的精度,将注意力机制与检测网络融合,把卷积注意力模块(convolutional block attention module,CBAM)与Neck部分融合,使模型在检测不同大小的物体时能关注重要的特征,提升特征提取能力.在主干网络中使用空间金字塔池化SPP模块,使得模型输入可以输入任意图像高宽比和大小.在激活函数方面,进行卷积操作后使用Hardswish激活函数,应用于整个网络模型.在损失函数方面,使用CIoU作为检测框回归的损失函数,改善定位精度低和训练过程中目标检测框回归速度慢的问题.实验结果表明,改进后的检测模型在KITTI 2D数据集上测试,目标检测的精确率(precision)提高了2.5%,召回率(recall)提高了5.1%,平均精度均值(mean average precision,mAP)提高了2.3%.展开更多
文摘在自动驾驶应用场景下,将YOLOv5应用于目标检测中,性能较之前版本有明显的提升,但在高运行速度情况下检测精度仍不够高,本文提出一种基于改进YOLOv5的车辆端目标检测方法.为解决训练不同数据集时需手动设计初始锚框大小,引入自适应锚框计算.在主干网络(backbone)添加压缩与激励模块(squeeze and excitation,SE),筛选针对通道的特征信息,提升特征表达能力.为了提升检测不同大小物体时的精度,将注意力机制与检测网络融合,把卷积注意力模块(convolutional block attention module,CBAM)与Neck部分融合,使模型在检测不同大小的物体时能关注重要的特征,提升特征提取能力.在主干网络中使用空间金字塔池化SPP模块,使得模型输入可以输入任意图像高宽比和大小.在激活函数方面,进行卷积操作后使用Hardswish激活函数,应用于整个网络模型.在损失函数方面,使用CIoU作为检测框回归的损失函数,改善定位精度低和训练过程中目标检测框回归速度慢的问题.实验结果表明,改进后的检测模型在KITTI 2D数据集上测试,目标检测的精确率(precision)提高了2.5%,召回率(recall)提高了5.1%,平均精度均值(mean average precision,mAP)提高了2.3%.