In this paper, by introducing three parameters a, b and λ, we give some new generalizations of Hardy-Hilbert’s integral inequality. As applications, we con-sider its equivalent form and some particular results.
In this paper, by introducing the norm ||x|| (x ∈ Rn), a multiple Hardy- Hilbert's integral inequality with the best constant factor and it's equivalent form are given.
In this article, we study the reverse HSlder type inequality and HSlder inequality in two dimensional case on time scales. We also obtain many integral inequalities by using HSlder inequalities on time scales which gi...In this article, we study the reverse HSlder type inequality and HSlder inequality in two dimensional case on time scales. We also obtain many integral inequalities by using HSlder inequalities on time scales which give Hardy's inequalities as spacial cases.展开更多
基金Foundation item:The NSF (0177) of Guangdong Institutions of Higher Learning,College and University
文摘In this paper, by introducing three parameters a, b and λ, we give some new generalizations of Hardy-Hilbert’s integral inequality. As applications, we con-sider its equivalent form and some particular results.
文摘In this paper, by introducing the norm ||x|| (x ∈ Rn), a multiple Hardy- Hilbert's integral inequality with the best constant factor and it's equivalent form are given.
文摘In this article, we study the reverse HSlder type inequality and HSlder inequality in two dimensional case on time scales. We also obtain many integral inequalities by using HSlder inequalities on time scales which give Hardy's inequalities as spacial cases.