In this paper,we establish an improved Hardy–Littlewood–Sobolev inequality on Snunder higher-order moments constraint.Moreover,by constructing precise test functions,using improved Hardy–Littlewood–Sobolev inequal...In this paper,we establish an improved Hardy–Littlewood–Sobolev inequality on Snunder higher-order moments constraint.Moreover,by constructing precise test functions,using improved Hardy–Littlewood–Sobolev inequality on S^(n),we show such inequality is almost optimal in critical case.As an application,we give a simpler proof of the existence of the maximizer for conformal Hardy–Littlewood–Sobolev inequality.展开更多
Using product and convolution theorems on Lorentz spaces, we characterize the sufficient and necessary conditions which ensure the validity of the doubly weighted Hardy-Littlewood-Sobolev inequality. It should be poin...Using product and convolution theorems on Lorentz spaces, we characterize the sufficient and necessary conditions which ensure the validity of the doubly weighted Hardy-Littlewood-Sobolev inequality. It should be pointed out that we con- sider whole ranges of p and q, i.e., 0 〈 p ≤∞ and 0 〈 q ≤∞.展开更多
The Hardy-Littlewood-PSlya (HLP) inequality [1] states that if a ∈ lp, b ∈ 1q and In this article, we prove the HLP inequality in the case where A = 1,p = q = 2 with a logarithm correction, as conjectured by Ding ...The Hardy-Littlewood-PSlya (HLP) inequality [1] states that if a ∈ lp, b ∈ 1q and In this article, we prove the HLP inequality in the case where A = 1,p = q = 2 with a logarithm correction, as conjectured by Ding [2]:In addition, we derive an accurate estimate for the best constant for this inequality.展开更多
In this paper, by introducting a weight coefficient of the form: π/sin(π/r)-1/10(2n+1)1+1/r (r>1, n∈N0), Hardy-Hilbert's inequality is refined. As its applications, an equivalent Hard y-Hilbert's typ...In this paper, by introducting a weight coefficient of the form: π/sin(π/r)-1/10(2n+1)1+1/r (r>1, n∈N0), Hardy-Hilbert's inequality is refined. As its applications, an equivalent Hard y-Hilbert's type inequality and its strengthened form are given, and Hardy-Li ttlewood's inequality is generalized and improved.展开更多
The Hardy-Sobolev inequality with general weights is established, and it is shown that the constant is optimal. The two weights in this inequality are determined by a Bernoulli equation. In addition, the authors obtai...The Hardy-Sobolev inequality with general weights is established, and it is shown that the constant is optimal. The two weights in this inequality are determined by a Bernoulli equation. In addition, the authors obtain the Hardy-Sobolev inequality with general weights and remainder terms. By choosing special weights, it turns to be many versions of the Hardy-Sobolev inequality and the Caffarelli-Kohn-Nirenberg inequality with remainder terms in the literature.展开更多
We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interactio...We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interaction exponent (2), a weighted Poincaré inequality is a natural consequence of the traditional weighted Hardy inequality, which in turn implies that the norms of solutions propagate in the L1 space. Now, the L estimate is based on the work of De Giorgi, Nash, and Moser, as well as a few weighted Sobolev inequalities.展开更多
基金the National Science Foundation of China(Grant Nos.12101380,12071269)China Postdoctoral Science Foundation(Grant No.2021M700086)Youth Innovation Team of Shaanxi Universities and the Fundamental Research Funds for the Central Universities(Grant Nos.GK202307001,GK202202007)。
文摘In this paper,we establish an improved Hardy–Littlewood–Sobolev inequality on Snunder higher-order moments constraint.Moreover,by constructing precise test functions,using improved Hardy–Littlewood–Sobolev inequality on S^(n),we show such inequality is almost optimal in critical case.As an application,we give a simpler proof of the existence of the maximizer for conformal Hardy–Littlewood–Sobolev inequality.
基金supported in part by National Natural Foundation of China (Grant Nos. 11071250 and 11271162)
文摘Using product and convolution theorems on Lorentz spaces, we characterize the sufficient and necessary conditions which ensure the validity of the doubly weighted Hardy-Littlewood-Sobolev inequality. It should be pointed out that we con- sider whole ranges of p and q, i.e., 0 〈 p ≤∞ and 0 〈 q ≤∞.
基金supported by the NSF grants DMS-0908097 and EAR-0934647
文摘The Hardy-Littlewood-PSlya (HLP) inequality [1] states that if a ∈ lp, b ∈ 1q and In this article, we prove the HLP inequality in the case where A = 1,p = q = 2 with a logarithm correction, as conjectured by Ding [2]:In addition, we derive an accurate estimate for the best constant for this inequality.
文摘In this paper, by introducting a weight coefficient of the form: π/sin(π/r)-1/10(2n+1)1+1/r (r>1, n∈N0), Hardy-Hilbert's inequality is refined. As its applications, an equivalent Hard y-Hilbert's type inequality and its strengthened form are given, and Hardy-Li ttlewood's inequality is generalized and improved.
基金the National Natural Science Foundation of China(10771074,10726060)the Natural Science Foundation of Guangdong Province(04020077)
文摘The Hardy-Sobolev inequality with general weights is established, and it is shown that the constant is optimal. The two weights in this inequality are determined by a Bernoulli equation. In addition, the authors obtain the Hardy-Sobolev inequality with general weights and remainder terms. By choosing special weights, it turns to be many versions of the Hardy-Sobolev inequality and the Caffarelli-Kohn-Nirenberg inequality with remainder terms in the literature.
文摘We prove the L estimate for the isotropic version of the homogeneous landau problem, which was explored by M. Gualdani and N. Guillen. As shown in a region of the smooth potentials range under values of the interaction exponent (2), a weighted Poincaré inequality is a natural consequence of the traditional weighted Hardy inequality, which in turn implies that the norms of solutions propagate in the L1 space. Now, the L estimate is based on the work of De Giorgi, Nash, and Moser, as well as a few weighted Sobolev inequalities.