期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于傅里叶变换的不确定性原理
1
作者
于海燕
郑神州
《大学物理》
2024年第1期1-4,共4页
以波函数的规范化模平方积分作为概率密度函数,我们给出了在L 2意义下的位移函数与速度函数的方差乘积有正下界的海森伯不等式;并用傅里叶变换的微分性质、Plancherel等式以及Cauchy-Schwarz不等式作了证明.另外,Hardy不确定性原理表明...
以波函数的规范化模平方积分作为概率密度函数,我们给出了在L 2意义下的位移函数与速度函数的方差乘积有正下界的海森伯不等式;并用傅里叶变换的微分性质、Plancherel等式以及Cauchy-Schwarz不等式作了证明.另外,Hardy不确定性原理表明可积函数和它的傅里叶变换不能同时迅速衰减,其最优的衰减方式是取高斯函数形式达到等式;基于Phragmen-Lindelof定理(无界区域上的最大模原理),给出了Hardy不确定性的复分析方法证明;最后我们给出了推广的Morgan不等式和Beurling不确定性.
展开更多
关键词
傅里叶变换
海森伯
不确定性
hardy不确定性
Morgan不等式
Beurling
不确定性
下载PDF
职称材料
题名
基于傅里叶变换的不确定性原理
1
作者
于海燕
郑神州
机构
内蒙古民族大学数学科学学院
北京交通大学数学与统计学院
出处
《大学物理》
2024年第1期1-4,共4页
文摘
以波函数的规范化模平方积分作为概率密度函数,我们给出了在L 2意义下的位移函数与速度函数的方差乘积有正下界的海森伯不等式;并用傅里叶变换的微分性质、Plancherel等式以及Cauchy-Schwarz不等式作了证明.另外,Hardy不确定性原理表明可积函数和它的傅里叶变换不能同时迅速衰减,其最优的衰减方式是取高斯函数形式达到等式;基于Phragmen-Lindelof定理(无界区域上的最大模原理),给出了Hardy不确定性的复分析方法证明;最后我们给出了推广的Morgan不等式和Beurling不确定性.
关键词
傅里叶变换
海森伯
不确定性
hardy不确定性
Morgan不等式
Beurling
不确定性
Keywords
Fourier Transform
Heisenberg uncertainty
hardy
uncertainty
Morgan inequality
Beurling uncertainty principle
分类号
O4-1 [理学—物理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于傅里叶变换的不确定性原理
于海燕
郑神州
《大学物理》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部