The phase relation of harmonics in high-intensity focused ultrasound is investigated numerically and experimen- tally. The nonlinear Westervelt equation is solved to model nonlinear focused sound field by using the fi...The phase relation of harmonics in high-intensity focused ultrasound is investigated numerically and experimen- tally. The nonlinear Westervelt equation is solved to model nonlinear focused sound field by using the finite difference time domain method. Experimental waveforms are measured by a robust needle hydrophone. Then the relative phase quantity is introduced and obtained by using the zero-phase filter. The results show that the nth harmonic relative phase quantity is approximately (n - 1) π/3 at geometric center and increases along the axial direction. Moreover, the relative phase quantity decreases with the increase of source amplitude. This phase relation gives an explanation of some nonlinear phenomena such as the discrepancy of positive and negative pressure.展开更多
Since laser intensity plays an important role in laser plasma interactions,a method of increasing laser intensity- focusing of an intense laser via a parabolic plasma concave surface- is proposed and investigated by t...Since laser intensity plays an important role in laser plasma interactions,a method of increasing laser intensity- focusing of an intense laser via a parabolic plasma concave surface- is proposed and investigated by three-dimensional particle-in-cell simulations.The geometric focusing via a parabolic concave surface and the temporal compression of high harmonics increased the peak intensity of the laser pulse by about two orders of magnitude.Compared with the improvement via laser optics approaches,this scheme is much more economic and appropriate for most femtosecond laser facilities.展开更多
We report the transformation of a linear electro-optically tunable non-phase-matched second-order nonlinear process into a cascaded second-order nonlinear process in a bulk KTP crystal to generate the effect of electr...We report the transformation of a linear electro-optically tunable non-phase-matched second-order nonlinear process into a cascaded second-order nonlinear process in a bulk KTP crystal to generate the effect of electrooptically tunable Kerr-type nonlinearity. By applying an electric field on the x–y plane, parallel to the z-axis of the crystal, phase mismatch is created, which introduces a nonlinear phase shift between the launched and reconverted fundamental waves from the generated second harmonic wave. Due to the nonuniform radial intensity distribution of a Gaussian beam, a curvature will be introduced into the fundamental wavefront, which focuses or defocuses the incident beam while propagating through the crystal.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 41274134 and 81527901the '12th Five-Year Plan' Period for Informatization Project in Supercomputing Key Demonstration of Chinese Academy of Sciences under Grant No XXH12503-02-02-2(07)
文摘The phase relation of harmonics in high-intensity focused ultrasound is investigated numerically and experimen- tally. The nonlinear Westervelt equation is solved to model nonlinear focused sound field by using the finite difference time domain method. Experimental waveforms are measured by a robust needle hydrophone. Then the relative phase quantity is introduced and obtained by using the zero-phase filter. The results show that the nth harmonic relative phase quantity is approximately (n - 1) π/3 at geometric center and increases along the axial direction. Moreover, the relative phase quantity decreases with the increase of source amplitude. This phase relation gives an explanation of some nonlinear phenomena such as the discrepancy of positive and negative pressure.
基金supported by National Natural Science Foundation of China(Nos.11174259,11175165)the Dual Hundred Foundation of China Academy of Engineering Physics
文摘Since laser intensity plays an important role in laser plasma interactions,a method of increasing laser intensity- focusing of an intense laser via a parabolic plasma concave surface- is proposed and investigated by three-dimensional particle-in-cell simulations.The geometric focusing via a parabolic concave surface and the temporal compression of high harmonics increased the peak intensity of the laser pulse by about two orders of magnitude.Compared with the improvement via laser optics approaches,this scheme is much more economic and appropriate for most femtosecond laser facilities.
文摘We report the transformation of a linear electro-optically tunable non-phase-matched second-order nonlinear process into a cascaded second-order nonlinear process in a bulk KTP crystal to generate the effect of electrooptically tunable Kerr-type nonlinearity. By applying an electric field on the x–y plane, parallel to the z-axis of the crystal, phase mismatch is created, which introduces a nonlinear phase shift between the launched and reconverted fundamental waves from the generated second harmonic wave. Due to the nonuniform radial intensity distribution of a Gaussian beam, a curvature will be introduced into the fundamental wavefront, which focuses or defocuses the incident beam while propagating through the crystal.