The boundary value problem for harmonic maps of the Poincare disc is discussed. The emphasis is on the non-smoothness of the given boundary values in the problem. Let T . be a subspace of the universal Teichmülle...The boundary value problem for harmonic maps of the Poincare disc is discussed. The emphasis is on the non-smoothness of the given boundary values in the problem. Let T . be a subspace of the universal Teichmüller space, defined as a set of normalized quasisymmetric homeomorphisms h of the unit circle S onto itself where h admits a quasiconformal extension to the unit disc D with a complex dilatation μ satisfyingwhere ρ(z)|dz|2 is the Poincare metric of D. Let B . be a Banach space consisting of holomorphic quadratic differentials φ in D with normsIt is shown that for any given quasisymmetric homeomorphism h : S1→S1∈ T . , there is a unique quasiconformal harmonic map of D with respect to the Poincare metric whose boundary corresponding is h and the Hopf differential of such a harmonic map belongs to B .展开更多
文摘The boundary value problem for harmonic maps of the Poincare disc is discussed. The emphasis is on the non-smoothness of the given boundary values in the problem. Let T . be a subspace of the universal Teichmüller space, defined as a set of normalized quasisymmetric homeomorphisms h of the unit circle S onto itself where h admits a quasiconformal extension to the unit disc D with a complex dilatation μ satisfyingwhere ρ(z)|dz|2 is the Poincare metric of D. Let B . be a Banach space consisting of holomorphic quadratic differentials φ in D with normsIt is shown that for any given quasisymmetric homeomorphism h : S1→S1∈ T . , there is a unique quasiconformal harmonic map of D with respect to the Poincare metric whose boundary corresponding is h and the Hopf differential of such a harmonic map belongs to B .