为了提高锂离子电池健康状态(state of health,SOH)估计的精确度,本研究结合卷积神经网络(convolutional neural networks,CNN)强大的局部特征提取能力和Transformer的序列处理能力,提出了基于多项式特征扩展的CNN-Transformer融合模型...为了提高锂离子电池健康状态(state of health,SOH)估计的精确度,本研究结合卷积神经网络(convolutional neural networks,CNN)强大的局部特征提取能力和Transformer的序列处理能力,提出了基于多项式特征扩展的CNN-Transformer融合模型。该方法提取了与电池容量高度相关的增量容量(incremental capacity,IC)曲线峰值、IC曲线对应电压、面积及充电时间作为健康因子,然后将其进行多项式扩展,增加融合模型对输入特征的非线性处理能力。引入主成分分析法(principal component analysis,PCA)对特征空间进行降维,有利于捕获数据有效信息,减少模型训练时间。采用美国国家宇航局(National Aeronautics and Space Administration,NASA)数据集和马里兰大学数据集,通过加入多项式特征前后的CNN-Transformer模型对比、加入多项式特征的CNN-Transformer模型和单一模型算法对比,验证了加入多项式特征的CNN-Transformer融合算法的有效性和精确度,结果表明提出模型的SOH估计精度相较于未加入多项式特征的CNN-Transformer模型,对于B0005、B0006、B0007、B0018数据集分别提高了38.71%、50.28%、4.71%、17.58%。展开更多
针对局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)方法中两极值点连线在极值点处一阶微分不连续,引起分解精度降低问题,提出新非平稳信号分析方法 -基于分段多项式的局部特征尺度分解(Piecewise Polynomial based L...针对局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)方法中两极值点连线在极值点处一阶微分不连续,引起分解精度降低问题,提出新非平稳信号分析方法 -基于分段多项式的局部特征尺度分解(Piecewise Polynomial based Local Characteristic-scale Decomposition,PPLCD)。用分段多项式取代LCD中直线连接,且均值曲线插值点由相邻3个同类极值点构成的多项式计算产生。通过仿真信号将PPLCD与LCD对比,结果表明,PPLCD在提高分量正交性、精确性等具有一定优越性;由转子碰摩故障诊断表明该方法的有效性。展开更多
文摘为了提高锂离子电池健康状态(state of health,SOH)估计的精确度,本研究结合卷积神经网络(convolutional neural networks,CNN)强大的局部特征提取能力和Transformer的序列处理能力,提出了基于多项式特征扩展的CNN-Transformer融合模型。该方法提取了与电池容量高度相关的增量容量(incremental capacity,IC)曲线峰值、IC曲线对应电压、面积及充电时间作为健康因子,然后将其进行多项式扩展,增加融合模型对输入特征的非线性处理能力。引入主成分分析法(principal component analysis,PCA)对特征空间进行降维,有利于捕获数据有效信息,减少模型训练时间。采用美国国家宇航局(National Aeronautics and Space Administration,NASA)数据集和马里兰大学数据集,通过加入多项式特征前后的CNN-Transformer模型对比、加入多项式特征的CNN-Transformer模型和单一模型算法对比,验证了加入多项式特征的CNN-Transformer融合算法的有效性和精确度,结果表明提出模型的SOH估计精度相较于未加入多项式特征的CNN-Transformer模型,对于B0005、B0006、B0007、B0018数据集分别提高了38.71%、50.28%、4.71%、17.58%。
文摘针对局部特征尺度分解(Local Characteristic-scale Decomposition,LCD)方法中两极值点连线在极值点处一阶微分不连续,引起分解精度降低问题,提出新非平稳信号分析方法 -基于分段多项式的局部特征尺度分解(Piecewise Polynomial based Local Characteristic-scale Decomposition,PPLCD)。用分段多项式取代LCD中直线连接,且均值曲线插值点由相邻3个同类极值点构成的多项式计算产生。通过仿真信号将PPLCD与LCD对比,结果表明,PPLCD在提高分量正交性、精确性等具有一定优越性;由转子碰摩故障诊断表明该方法的有效性。