An excessive use of non-linear devices in industry results in current harmonics that degrades the power quality with an unfavorable effect on power system performance.In this research,a novel control techniquebased Hy...An excessive use of non-linear devices in industry results in current harmonics that degrades the power quality with an unfavorable effect on power system performance.In this research,a novel control techniquebased Hybrid-Active Power-Filter(HAPF)is implemented for reactive power compensation and harmonic current component for balanced load by improving the Power-Factor(PF)and Total–Hormonic Distortion(THD)and the performance of a system.This work proposed a soft-computing technique based on Particle Swarm-Optimization(PSO)and Adaptive Fuzzy technique to avoid the phase delays caused by conventional control methods.Moreover,the control algorithms are implemented for an instantaneous reactive and active current(Id-Iq)and power theory(Pq0)in SIMULINK.To prevent the degradation effect of disturbances on the system’s performance,PS0-PI is applied in the inner loop which generate a required dc link-voltage.Additionally,a comparative analysis of both techniques has been presented to evaluate and validate the performance under balanced load conditions.The presented result concludes that the Adaptive Fuzzy PI controller performs better due to the non-linearity and robustness of the system.Therefore,the gains taken from a tuning of the PSO based PI controller optimized with Fuzzy Logic Controller(FLC)are optimal that will detect reactive power and harmonics much faster and accurately.The proposed hybrid technique minimizes distortion by selecting appropriate switching pulses for VSI(Voltage Source Inverter),and thus the simulation has been taken in SIMULINK/MATLAB.The proposed technique gives better tracking performance and robustness for reactive power compensation and harmonics mitigation.As a result of the comparison,it can be concluded that the PSO-basedAdaptive Fuzzy PI system produces accurate results with the lower THD and a power factor closer to unity than other techniques.展开更多
In order to minimize the harmonic distortion rate of the current at the common coupling point,this paper proposes a coordinated allocation strategy of harmonic compensation capacity considering the performance of acti...In order to minimize the harmonic distortion rate of the current at the common coupling point,this paper proposes a coordinated allocation strategy of harmonic compensation capacity considering the performance of active power filters(APF).On the premise of proportional distribution of harmonic compensation capacity,the harmonic compensation rate of each APF is considered,and the harmonic current value of each APF to be compensated is obtained.At the same time,the communication topology is introduced.Each APF takes into account the compensation ability of other APFs.Finally,three APFs with different capacity and performance are configured at the harmonic source to suppress the same harmonic source,and the harmonic distortion rate is reduced to 1.73%.The simulation results show that the strategy can effectively improve the compensation capability of the multiple APF cascaded system to the power grid without increasing the installed capacity.展开更多
In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design...In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design for passive filter. Also a controlling method with fast response time and good accuracy is put forward for the compensator, which is more suitable for the dynamic load.展开更多
On the basis of detailed analysis of a novel harmonic counteracting method which can be used to effectively compensate the supply line harmonic currents of a passive single phase diode bridge rectifier, this paper pr...On the basis of detailed analysis of a novel harmonic counteracting method which can be used to effectively compensate the supply line harmonic currents of a passive single phase diode bridge rectifier, this paper presents two simpler single phase diode bridge rectifier configurations and their alternatives which can achieve low supply line current THD(total harmonic distortion) too. Moreover, this paper also proposes a few passive hamonic counteracting networks for multi single phase rectifiers which are connected in parallel.展开更多
An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structu...An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.展开更多
In recent years, renewable energy resources are utilized to meet the growing energy demand. The integration of renewable energy resources with the grid incorporates power electronic converters for conversion of energy...In recent years, renewable energy resources are utilized to meet the growing energy demand. The integration of renewable energy resources with the grid incorporates power electronic converters for conversion of energy. These power electronic converters introduce power quality issues such as a harmonics, voltage regulation etc. Hence, to improve the power quality issues, this work proposes a new control strategy for a grid interconnected solar system. In this proposed work, a maximum power point tracking (MPPT) scheme has been used to obtain maximum power from the solar system and DC/DC converter is implemented to maintain a constant DC voltage. An active filtering method is utilized to improve the power quality of the grid connected solar system. The proposed system is validated through dynamic simulation using MATLAB/Simulink Power system toolbox and results are delivered to validate the effectiveness of the work.展开更多
This paper reports a new project - the poloidal field (PF) grid power supply system to replace the ac flywheel generator power supply system on the basis of the present running parameters of the HT-7 poloidal field ...This paper reports a new project - the poloidal field (PF) grid power supply system to replace the ac flywheel generator power supply system on the basis of the present running parameters of the HT-7 poloidal field and the short-circuit capacity of our transformer substation. The designed parameters of the PF grid power supply system have been verified to meet the requirements of the heating field (HF) and the vertical field (VF). In the meantime, in order to reduce the disturbance to the local power grid, the device of reactive power and harmonic current compensation has been added. Experimental results have confirmed the feasibility of the PF grid power supply system. Compared with the ac flywheel generator, the PF grid power supply system has the advantages of lower noise, precise control, convenient maintenance, simple operation and cost savings.展开更多
The results of the implementation of an actual microgrid in the Netherlands are presented. This microgrid has photovoltaic panels as microsources, energy storage, and a flexible AC distribution interfacing system that...The results of the implementation of an actual microgrid in the Netherlands are presented. This microgrid has photovoltaic panels as microsources, energy storage, and a flexible AC distribution interfacing system that can operate connected to the public grid or autonomously where it regulates the site's voltage and frequency. In this paper, the potential of the microgrid in improving power quality issues of the site, specifically harmonic distortions, is demonstrated. Results show that flexible AC distribution interfacing system devices were able to compensate voltage harmonics when the microgrid was operating connected to the public grid and when operating autonomously. Other tests such as short-circuit, synchronization and blackstart were also conducted. The improvement in power quality and positive results of the other tests demonstrate that a self-supporting, reliable and efficient operation of the microgrid can be achieved.展开更多
This paper proposes a novel approach to compensate buses voltage and current harmonics through distributed generation(DG)interfacing converter in a multibus microgrid.The control approach of each individual DG unit wa...This paper proposes a novel approach to compensate buses voltage and current harmonics through distributed generation(DG)interfacing converter in a multibus microgrid.The control approach of each individual DG unit was designed to use only feedback variables of the converter itself that can be measured locally.In the proposed approach,the adjacent bus voltage is indirectly derived from the measured DG converter output voltage,DG line current and line impedance.A voltage closed-loop controller and a current closed-loop controller are designed to achieve both functions of DG real power generation and harmonics compensation.Therefore,the traditional harmonic measurement devices installed at the bus as well as the long distance communication between the bus and the DG converter are not required.The proposed approach can compensate the current harmonics,mitigate the buses voltage distortion and enable the customer devices to be operated in normal conditions within the multi-bus microgrid,and meanwhile relieve the burden of power quality regulator installed at the point of common coupling.Matlab simulations and experimental results are presented to show the operational effectiveness of the proposed approach.展开更多
In recent years,the hybrid AC-DC microgrid has been well accepted as it combines the advantages of both AC and DC systems.As the microgrid contains both DC sub-grids and AC sub-grids,interlinking DC-AC converters are ...In recent years,the hybrid AC-DC microgrid has been well accepted as it combines the advantages of both AC and DC systems.As the microgrid contains both DC sub-grids and AC sub-grids,interlinking DC-AC converters are essential.Meanwhile,considering the nonlinear AC loads may deteriorate the voltage quality of the AC bus,embedding an ancillary harmonic compensation function to the interlinking converters is promising.However,the conventional harmonic control methods used for active power filters(APFs)may not be suitable for the interlinking converters due to the main purpose of it is to exchange real and reactive power between the DC and AC sub-grids.The switching frequency is preferred to be lower than the APFs when the capacity of the microgrid is large.At low switching frequency,harmonic compensation performance or even the system stability may be affected.In this paper,a harmonic compensation approach suitable for hybrid AC-DC interlinking converters at low switching frequency is proposed.Through feeding the PWM reference signal with the harmonic compensation component directly to avoid the multi-loop control path of the fundamental component,the proposed method can achieve the effective harmonics compensation without being limited by the closed-loop control bandwidth.The proposed method,modeling approaches,stability analysis,as well as detailed virtual impedance design are presented.Experimental verification is also provided.展开更多
The main objective of this paper is to develop PI and fuzzy controllers to analyze the performance of instantaneous real active and reactive power (p-q) control strategy for extracting reference currents of shunt ac...The main objective of this paper is to develop PI and fuzzy controllers to analyze the performance of instantaneous real active and reactive power (p-q) control strategy for extracting reference currents of shunt active filters (SHAFs) under balanced, unbalanced, and balanced non-sinusoidal conditions. When the supply voltages are balanced and sinusoidal, both controllers converge to the same compensation characteristics. However, if the supply voltages are distorted and/or unbalanced sinusoidal, these controllers result in different degrees of compensation in harmonics. The p-q control strategy with PI controller is unable to yield an adequate solution when source voltages are not ideal. Extensive simulations were carried out with balance, unbalanced, and non-sinusoidal conditions. Simulation results validate the superiority of fuzzy logic controller over PI controller. The three-phase four-wire SHAF system is also implemented on a real-time digital simulator (RTDS hardware) to further verify its effective-ness. The detailed simulation and RTDS hardware results are included.展开更多
Microgrids are being developed as a building block for future smart grid system.Key issues for the control and operation of microgrid include integration technologies and energy management schemes.This paper presents ...Microgrids are being developed as a building block for future smart grid system.Key issues for the control and operation of microgrid include integration technologies and energy management schemes.This paper presents an overview of grid integration and energy management strategies of microgrids.It covers a review of power electronics interface topologies for different types of distributed generation(DG)units in a microgrid,a discussion of energy management strategies,as well as the DG interfacing converter control schemes.Considering the intermittent nature of many renewable energy based DG units,the ancillary services of DGs using the available interfacing converter rating are also discussed in the paper.展开更多
In the storage ring of the third generation light sources, nonlinear optimization is an indispensable course in order to obtain ample dynamic acceptances and to reach high injection efficiency and long beam lifetime, ...In the storage ring of the third generation light sources, nonlinear optimization is an indispensable course in order to obtain ample dynamic acceptances and to reach high injection efficiency and long beam lifetime, especially in a low emittance lattice. An improved optimization algorithm based on the single resonance approach, which takes relative weight and initial Harmonic Sextupole Integral Strength (HSIS) as search variables, is discussed in this paper. Applications of the improved method in several test lattices are presented. Detailed analysis of the storage ring of the Shanghai Synchrotron Radiation Facility (SSRF) is particularly emphasized. Furthermore, cancellation of the driving terms is investigated to reveal the physical mechanism of the harmonic sextupole compensation. Sensitivity to the weight and the initial HSIS as well as dependence of the optimum solution on the convergent factor is analyzed.展开更多
We theoretically investigate the attosecond pulse generation in an orthogonal multicycle midinfrared two-color laser field. It is demonstrated that multiple continuum-like humps, which consist of about twenty orders o...We theoretically investigate the attosecond pulse generation in an orthogonal multicycle midinfrared two-color laser field. It is demonstrated that multiple continuum-like humps, which consist of about twenty orders of harmonics and an intensity of about one order higher than the adjacent normal harmonics, are generated when longer wavelength driving fields are used. By filtering these humps, intense isolated attosecond pulses(IAPs) are directly generated without any phase compensation. Our proposal provides a simple technique to generate intense IAPs with various central photon energies covering the multi-ke V spectral regime by using multicycle midinfrared driving pulses with high pump energy in the experiment.展开更多
基金This work was supported by the King Saud University,Riyadh,Saudi Arabia,through Researchers Supporting Project number RSP-2021/184.
文摘An excessive use of non-linear devices in industry results in current harmonics that degrades the power quality with an unfavorable effect on power system performance.In this research,a novel control techniquebased Hybrid-Active Power-Filter(HAPF)is implemented for reactive power compensation and harmonic current component for balanced load by improving the Power-Factor(PF)and Total–Hormonic Distortion(THD)and the performance of a system.This work proposed a soft-computing technique based on Particle Swarm-Optimization(PSO)and Adaptive Fuzzy technique to avoid the phase delays caused by conventional control methods.Moreover,the control algorithms are implemented for an instantaneous reactive and active current(Id-Iq)and power theory(Pq0)in SIMULINK.To prevent the degradation effect of disturbances on the system’s performance,PS0-PI is applied in the inner loop which generate a required dc link-voltage.Additionally,a comparative analysis of both techniques has been presented to evaluate and validate the performance under balanced load conditions.The presented result concludes that the Adaptive Fuzzy PI controller performs better due to the non-linearity and robustness of the system.Therefore,the gains taken from a tuning of the PSO based PI controller optimized with Fuzzy Logic Controller(FLC)are optimal that will detect reactive power and harmonics much faster and accurately.The proposed hybrid technique minimizes distortion by selecting appropriate switching pulses for VSI(Voltage Source Inverter),and thus the simulation has been taken in SIMULINK/MATLAB.The proposed technique gives better tracking performance and robustness for reactive power compensation and harmonics mitigation.As a result of the comparison,it can be concluded that the PSO-basedAdaptive Fuzzy PI system produces accurate results with the lower THD and a power factor closer to unity than other techniques.
基金This work was supported in part by the National Natural Science Foundation of China(Grant No.61863023).
文摘In order to minimize the harmonic distortion rate of the current at the common coupling point,this paper proposes a coordinated allocation strategy of harmonic compensation capacity considering the performance of active power filters(APF).On the premise of proportional distribution of harmonic compensation capacity,the harmonic compensation rate of each APF is considered,and the harmonic current value of each APF to be compensated is obtained.At the same time,the communication topology is introduced.Each APF takes into account the compensation ability of other APFs.Finally,three APFs with different capacity and performance are configured at the harmonic source to suppress the same harmonic source,and the harmonic distortion rate is reduced to 1.73%.The simulation results show that the strategy can effectively improve the compensation capability of the multiple APF cascaded system to the power grid without increasing the installed capacity.
文摘In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimized approach is given in the parameters design for passive filter. Also a controlling method with fast response time and good accuracy is put forward for the compensator, which is more suitable for the dynamic load.
文摘On the basis of detailed analysis of a novel harmonic counteracting method which can be used to effectively compensate the supply line harmonic currents of a passive single phase diode bridge rectifier, this paper presents two simpler single phase diode bridge rectifier configurations and their alternatives which can achieve low supply line current THD(total harmonic distortion) too. Moreover, this paper also proposes a few passive hamonic counteracting networks for multi single phase rectifiers which are connected in parallel.
基金The National Basic Research Program of China(973 Program)(No.2013CB035603)the National Natural Science Foundation of China(No.51007008,51137001)+1 种基金the Ph.D.Programs Foundation of Ministry of Education of China(No.20100092120043)the Fundamental Research Funds for the Central Universities
文摘An all-digital hybrid current regulation scheme for the single-phase shunt active power filter (APF) is presented. The proposed hybrid current control scheme integrates the deadbeat control and the dual-mode structure repetitive control (DMRC) so that it can offer superior steady-state performance and good transient features. Unlike the conventional schemes, the proposed scheme-based APF can compensate both the odd and the even order harmonics in grid. The detailed design criteria and the stability analysis of the proposed hybrid current controller are presented. Moreover, an improved structure which incorporates the proposed hybrid controller and the resonant controller for tracking specific order harmonics is given. The relationships between the resonant controller and different repetitive control schemes are discussed. Experimental results verify the effectiveness and advantages of the proposed hybrid control scheme.
文摘In recent years, renewable energy resources are utilized to meet the growing energy demand. The integration of renewable energy resources with the grid incorporates power electronic converters for conversion of energy. These power electronic converters introduce power quality issues such as a harmonics, voltage regulation etc. Hence, to improve the power quality issues, this work proposes a new control strategy for a grid interconnected solar system. In this proposed work, a maximum power point tracking (MPPT) scheme has been used to obtain maximum power from the solar system and DC/DC converter is implemented to maintain a constant DC voltage. An active filtering method is utilized to improve the power quality of the grid connected solar system. The proposed system is validated through dynamic simulation using MATLAB/Simulink Power system toolbox and results are delivered to validate the effectiveness of the work.
基金The project supported by the Meg-science Engineering Project of the Chinese Academy of Sciences
文摘This paper reports a new project - the poloidal field (PF) grid power supply system to replace the ac flywheel generator power supply system on the basis of the present running parameters of the HT-7 poloidal field and the short-circuit capacity of our transformer substation. The designed parameters of the PF grid power supply system have been verified to meet the requirements of the heating field (HF) and the vertical field (VF). In the meantime, in order to reduce the disturbance to the local power grid, the device of reactive power and harmonic current compensation has been added. Experimental results have confirmed the feasibility of the PF grid power supply system. Compared with the ac flywheel generator, the PF grid power supply system has the advantages of lower noise, precise control, convenient maintenance, simple operation and cost savings.
文摘The results of the implementation of an actual microgrid in the Netherlands are presented. This microgrid has photovoltaic panels as microsources, energy storage, and a flexible AC distribution interfacing system that can operate connected to the public grid or autonomously where it regulates the site's voltage and frequency. In this paper, the potential of the microgrid in improving power quality issues of the site, specifically harmonic distortions, is demonstrated. Results show that flexible AC distribution interfacing system devices were able to compensate voltage harmonics when the microgrid was operating connected to the public grid and when operating autonomously. Other tests such as short-circuit, synchronization and blackstart were also conducted. The improvement in power quality and positive results of the other tests demonstrate that a self-supporting, reliable and efficient operation of the microgrid can be achieved.
文摘This paper proposes a novel approach to compensate buses voltage and current harmonics through distributed generation(DG)interfacing converter in a multibus microgrid.The control approach of each individual DG unit was designed to use only feedback variables of the converter itself that can be measured locally.In the proposed approach,the adjacent bus voltage is indirectly derived from the measured DG converter output voltage,DG line current and line impedance.A voltage closed-loop controller and a current closed-loop controller are designed to achieve both functions of DG real power generation and harmonics compensation.Therefore,the traditional harmonic measurement devices installed at the bus as well as the long distance communication between the bus and the DG converter are not required.The proposed approach can compensate the current harmonics,mitigate the buses voltage distortion and enable the customer devices to be operated in normal conditions within the multi-bus microgrid,and meanwhile relieve the burden of power quality regulator installed at the point of common coupling.Matlab simulations and experimental results are presented to show the operational effectiveness of the proposed approach.
文摘In recent years,the hybrid AC-DC microgrid has been well accepted as it combines the advantages of both AC and DC systems.As the microgrid contains both DC sub-grids and AC sub-grids,interlinking DC-AC converters are essential.Meanwhile,considering the nonlinear AC loads may deteriorate the voltage quality of the AC bus,embedding an ancillary harmonic compensation function to the interlinking converters is promising.However,the conventional harmonic control methods used for active power filters(APFs)may not be suitable for the interlinking converters due to the main purpose of it is to exchange real and reactive power between the DC and AC sub-grids.The switching frequency is preferred to be lower than the APFs when the capacity of the microgrid is large.At low switching frequency,harmonic compensation performance or even the system stability may be affected.In this paper,a harmonic compensation approach suitable for hybrid AC-DC interlinking converters at low switching frequency is proposed.Through feeding the PWM reference signal with the harmonic compensation component directly to avoid the multi-loop control path of the fundamental component,the proposed method can achieve the effective harmonics compensation without being limited by the closed-loop control bandwidth.The proposed method,modeling approaches,stability analysis,as well as detailed virtual impedance design are presented.Experimental verification is also provided.
文摘The main objective of this paper is to develop PI and fuzzy controllers to analyze the performance of instantaneous real active and reactive power (p-q) control strategy for extracting reference currents of shunt active filters (SHAFs) under balanced, unbalanced, and balanced non-sinusoidal conditions. When the supply voltages are balanced and sinusoidal, both controllers converge to the same compensation characteristics. However, if the supply voltages are distorted and/or unbalanced sinusoidal, these controllers result in different degrees of compensation in harmonics. The p-q control strategy with PI controller is unable to yield an adequate solution when source voltages are not ideal. Extensive simulations were carried out with balance, unbalanced, and non-sinusoidal conditions. Simulation results validate the superiority of fuzzy logic controller over PI controller. The three-phase four-wire SHAF system is also implemented on a real-time digital simulator (RTDS hardware) to further verify its effective-ness. The detailed simulation and RTDS hardware results are included.
文摘Microgrids are being developed as a building block for future smart grid system.Key issues for the control and operation of microgrid include integration technologies and energy management schemes.This paper presents an overview of grid integration and energy management strategies of microgrids.It covers a review of power electronics interface topologies for different types of distributed generation(DG)units in a microgrid,a discussion of energy management strategies,as well as the DG interfacing converter control schemes.Considering the intermittent nature of many renewable energy based DG units,the ancillary services of DGs using the available interfacing converter rating are also discussed in the paper.
文摘In the storage ring of the third generation light sources, nonlinear optimization is an indispensable course in order to obtain ample dynamic acceptances and to reach high injection efficiency and long beam lifetime, especially in a low emittance lattice. An improved optimization algorithm based on the single resonance approach, which takes relative weight and initial Harmonic Sextupole Integral Strength (HSIS) as search variables, is discussed in this paper. Applications of the improved method in several test lattices are presented. Detailed analysis of the storage ring of the Shanghai Synchrotron Radiation Facility (SSRF) is particularly emphasized. Furthermore, cancellation of the driving terms is investigated to reveal the physical mechanism of the harmonic sextupole compensation. Sensitivity to the weight and the initial HSIS as well as dependence of the optimum solution on the convergent factor is analyzed.
基金supported by the National Natural Science Foundation of China(Nos.11127901,61521093,11134010,11227902,11574332,1151101142,61690223,and 11274325)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB16)the Youth Innovation Promotion Association of Chinese Academy of Sciences
文摘We theoretically investigate the attosecond pulse generation in an orthogonal multicycle midinfrared two-color laser field. It is demonstrated that multiple continuum-like humps, which consist of about twenty orders of harmonics and an intensity of about one order higher than the adjacent normal harmonics, are generated when longer wavelength driving fields are used. By filtering these humps, intense isolated attosecond pulses(IAPs) are directly generated without any phase compensation. Our proposal provides a simple technique to generate intense IAPs with various central photon energies covering the multi-ke V spectral regime by using multicycle midinfrared driving pulses with high pump energy in the experiment.