将和谱问题φ_(zz)+sum from i=1 to v u_iλ~iφ=αφ相联系的推广的Harry Dym方程族限制到它们递推算子的不变子空间,我们得到一族Hamilton系统。利用和谱问题有关的递推关系式,可以构造这族系统的守恒积分和Hamilton函数,从而证明,这...将和谱问题φ_(zz)+sum from i=1 to v u_iλ~iφ=αφ相联系的推广的Harry Dym方程族限制到它们递推算子的不变子空间,我们得到一族Hamilton系统。利用和谱问题有关的递推关系式,可以构造这族系统的守恒积分和Hamilton函数,从而证明,这些Hamilton系统在Liouville异义下是完全可积的且两两可交换的,同时它们的解满足推广的Harry Dym方程。展开更多
In this paper, the homotopy analysis method (HAM) has been employed to obtain the approximate analytical solution of the nonlinear Harry-Dym (HD) equation, which is one of the most important soliton equations. Utilizi...In this paper, the homotopy analysis method (HAM) has been employed to obtain the approximate analytical solution of the nonlinear Harry-Dym (HD) equation, which is one of the most important soliton equations. Utilizing the HAM, thereby employing the initial approximation, variations of the 7th-order approximation of the Harry-Dym equation is obtained. It is found that effect of the nonzero auxiliary parameter on convergence rate of the series solution is undeniable. It is also shown that, to some extent, order of the fractional derivative plays a fundamental role in the prediction of convergence. The final results reported by the HAM have been compared with the exact solution as well as those obtained through the other methods.展开更多
In this paper, Lie point symmetry group of the Harry-Dym type equation with Riemann-Liouville fractional derivative is constructed. Then complete subgroup classification is obtained by means of the optimal system meth...In this paper, Lie point symmetry group of the Harry-Dym type equation with Riemann-Liouville fractional derivative is constructed. Then complete subgroup classification is obtained by means of the optimal system method. Finally, corresponding group-invariant solutions with reduced fractional ordinary differential equations are presented via similarity reductions.展开更多
In this paper, the authors consider the Harry-Dym equation on the line with decaying initial value. They construct the solution of the Harry-Dym equation via the solution of a 2 × 2 matrix Riemann-Hilbert problem...In this paper, the authors consider the Harry-Dym equation on the line with decaying initial value. They construct the solution of the Harry-Dym equation via the solution of a 2 × 2 matrix Riemann-Hilbert problem in the complex plane. Further, onecusp soliton solution is expressed in terms of the Riemann-Hilbert problem.展开更多
Three kinds of initial-value problems of the Harry-Dym equation are considered. Theexistence and regularity of solution are proved. Some special solutions are given. Severalexamples show that different initial-value p...Three kinds of initial-value problems of the Harry-Dym equation are considered. Theexistence and regularity of solution are proved. Some special solutions are given. Severalexamples show that different initial-value problems are related to K. D. V. equation onthe whole line, the half line or the finite interval respectively.展开更多
基金Project supported by the Fund of the State Educational Committee of China.
文摘将和谱问题φ_(zz)+sum from i=1 to v u_iλ~iφ=αφ相联系的推广的Harry Dym方程族限制到它们递推算子的不变子空间,我们得到一族Hamilton系统。利用和谱问题有关的递推关系式,可以构造这族系统的守恒积分和Hamilton函数,从而证明,这些Hamilton系统在Liouville异义下是完全可积的且两两可交换的,同时它们的解满足推广的Harry Dym方程。
文摘In this paper, the homotopy analysis method (HAM) has been employed to obtain the approximate analytical solution of the nonlinear Harry-Dym (HD) equation, which is one of the most important soliton equations. Utilizing the HAM, thereby employing the initial approximation, variations of the 7th-order approximation of the Harry-Dym equation is obtained. It is found that effect of the nonzero auxiliary parameter on convergence rate of the series solution is undeniable. It is also shown that, to some extent, order of the fractional derivative plays a fundamental role in the prediction of convergence. The final results reported by the HAM have been compared with the exact solution as well as those obtained through the other methods.
基金Supported by the National Natural Science Foundations of China(Grant No.11201371,11371293,11371323)the National Natural Science Foundation of Shaanxi Province(Grant No.2012JQ1013,2015JM1037)the Foundation of Department of Education of Zhejiang Province(Grant No.Y201432097)
文摘In this paper, Lie point symmetry group of the Harry-Dym type equation with Riemann-Liouville fractional derivative is constructed. Then complete subgroup classification is obtained by means of the optimal system method. Finally, corresponding group-invariant solutions with reduced fractional ordinary differential equations are presented via similarity reductions.
基金supported by the National Natural Science Foundation of China(No.11271079)
文摘In this paper, the authors consider the Harry-Dym equation on the line with decaying initial value. They construct the solution of the Harry-Dym equation via the solution of a 2 × 2 matrix Riemann-Hilbert problem in the complex plane. Further, onecusp soliton solution is expressed in terms of the Riemann-Hilbert problem.
文摘Three kinds of initial-value problems of the Harry-Dym equation are considered. Theexistence and regularity of solution are proved. Some special solutions are given. Severalexamples show that different initial-value problems are related to K. D. V. equation onthe whole line, the half line or the finite interval respectively.