期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hashtag Recommendation Using LSTM Networks with Self-Attention 被引量:2
1
作者 Yatian Shen Yan Li +5 位作者 Jun Sun Wenke Ding Xianjin Shi Lei Zhang Xiajiong Shen Jing He 《Computers, Materials & Continua》 SCIE EI 2019年第9期1261-1269,共9页
On Twitter,people often use hashtags to mark the subject of a tweet.Tweets have specific themes or content that are easy for people to manage.With the increase in the number of tweets,how to automatically recommend ha... On Twitter,people often use hashtags to mark the subject of a tweet.Tweets have specific themes or content that are easy for people to manage.With the increase in the number of tweets,how to automatically recommend hashtags for tweets has received wide attention.The previous hashtag recommendation methods were to convert the task into a multi-class classification problem.However,these methods can only recommend hashtags that appeared in historical information,and cannot recommend the new ones.In this work,we extend the self-attention mechanism to turn the hashtag recommendation task into a sequence labeling task.To train and evaluate the proposed method,we used the real tweet data which is collected from Twitter.Experimental results show that the proposed method can be significantly better than the most advanced method.Compared with the state-of-the-art methods,the accuracy of our method has been increased 4%. 展开更多
关键词 hashtags recommendation self-attention neural networks sequence labeling
下载PDF
Hashtag Recommendation Based on Multi-Features of Microblogs 被引量:6
2
作者 Fei-Fei Kou Jun-Ping Du +4 位作者 Cong-Xian Yang Yan-Song Shi Wan-Qiu Cui Mei-Yu Liang Yue Geng 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第4期711-726,共16页
Hashtag recommendation for microblogs is a very hot research topic that is useful to many applications involving microblogs. However, since short text in microblogs and low utilization rate of hashtags will lead to th... Hashtag recommendation for microblogs is a very hot research topic that is useful to many applications involving microblogs. However, since short text in microblogs and low utilization rate of hashtags will lead to the data sparsity problem, it is difficult for typical hashtag recommendation methods to achieve accurate recommendation. In light of this, we propose HRMF, a hashtag recommendation method based on multi-features of microblogs in this article. First, our HRMF expands short text into long text, and then it simultaneously models multi-features (i.e., user, hashtag, text) of microblogs by designing a new topic model. To further alleviate the data sparsity problem, HRMF exploits hashtags of both similar users and similar microblogs as the candidate hashtags. In particular, to find similar users, HRMF combines the designed topic model with typical user-based collaborative filtering method. Finally, we realize hashtag recommendation by calculating the recommended score of each hashtag based on the generated topical representations of multi-features. Experimental results on a real-world dataset crawled from Sina Weibo demonstrate the effectiveness of our HRMF for hashtag recommendation. 展开更多
关键词 hashtag recommendation topic model collaborative filtering method microblog
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部