针对短采样宽带信号近似最大似然(approximated maximum likelihood,AML)方位估计计算量大的问题,将马尔科夫链-蒙特卡罗方法与近似最大似然方位估计相结合,提出一种基于Metropolis-Hastings抽样的近似最大似然方位估计方法(AMLMH)。该...针对短采样宽带信号近似最大似然(approximated maximum likelihood,AML)方位估计计算量大的问题,将马尔科夫链-蒙特卡罗方法与近似最大似然方位估计相结合,提出一种基于Metropolis-Hastings抽样的近似最大似然方位估计方法(AMLMH)。该方法将AML算法的空间谱函数作为信号的概率分布函数,并利用Metropolis-Hastings抽样方法从该概率分布函数中抽样。研究结果表明,AMLMH方法不但保持了原近似最大似然方位估计方法的优良性能,而且减小了计算量。展开更多
文摘针对短采样宽带信号近似最大似然(approximated maximum likelihood,AML)方位估计计算量大的问题,将马尔科夫链-蒙特卡罗方法与近似最大似然方位估计相结合,提出一种基于Metropolis-Hastings抽样的近似最大似然方位估计方法(AMLMH)。该方法将AML算法的空间谱函数作为信号的概率分布函数,并利用Metropolis-Hastings抽样方法从该概率分布函数中抽样。研究结果表明,AMLMH方法不但保持了原近似最大似然方位估计方法的优良性能,而且减小了计算量。