In this article, we introduce the Hausdorff convergence to derive a differentiable sphere theorem which shows an interesting rigidity phenomenon on some kind of manifolds.
The authors introduce the Hausdorff convergence to discuss the differentiable sphere theorem with excess pinching. Finally, a type of rigidity phenomenon on Riemannian manifolds is derived.
Let Mn be a compact, simply connected n (≥3)-dimensional Riemannian manifold without bound-ary and Sn be the unit sphere Euclidean space Rn+1. We derive a differentiable sphere theorem whenever themanifold concerned ...Let Mn be a compact, simply connected n (≥3)-dimensional Riemannian manifold without bound-ary and Sn be the unit sphere Euclidean space Rn+1. We derive a differentiable sphere theorem whenever themanifold concerned satisfies that the sectional curvature KM is not larger than 1, while Ric(M)≥n+2 4 and the volume V (M) is not larger than (1 + η)V (Sn) for some positive number η depending only on n.展开更多
基金Supported by the NNSF of China (10671066)the NSF of Shandong Province (Q2008A08)Scientific Research Foundation of QFNU
文摘In this article, we introduce the Hausdorff convergence to derive a differentiable sphere theorem which shows an interesting rigidity phenomenon on some kind of manifolds.
基金supported by the National Natural Science Foundation of China (No. 10671066)the Scientific Research Foundation of Qufu Normal University and the Shanghai and Shandong Priority Academic Discipline
文摘The authors introduce the Hausdorff convergence to discuss the differentiable sphere theorem with excess pinching. Finally, a type of rigidity phenomenon on Riemannian manifolds is derived.
基金supported by National Natural Science Foundation of China (Grant No.10871069)the Youth Natural Science Foundation of Shandong Province (Grant No. Q2008A08)the Youth Foundation of Qufu Normal University
文摘Let Mn be a compact, simply connected n (≥3)-dimensional Riemannian manifold without bound-ary and Sn be the unit sphere Euclidean space Rn+1. We derive a differentiable sphere theorem whenever themanifold concerned satisfies that the sectional curvature KM is not larger than 1, while Ric(M)≥n+2 4 and the volume V (M) is not larger than (1 + η)V (Sn) for some positive number η depending only on n.