期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
A DIFFERENTIABLE SPHERE THEOREM WITH PINCHING INTEGRAL RICCI CURVATURE
1
作者 王培合 沈纯理 《Acta Mathematica Scientia》 SCIE CSCD 2011年第1期321-330,共10页
In this article, we introduce the Hausdorff convergence to derive a differentiable sphere theorem which shows an interesting rigidity phenomenon on some kind of manifolds.
关键词 k-th Ricci curvature hausdorff convergence differentiable sphere theorem harmonic coordinate integral Ricci curvature
下载PDF
A Rigidity Phenomenon on Riemannian Manifolds with Reverse Excess Pinching 被引量:3
2
作者 Peihe WANG Chunli SHEN 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2009年第1期67-76,共10页
The authors introduce the Hausdorff convergence to discuss the differentiable sphere theorem with excess pinching. Finally, a type of rigidity phenomenon on Riemannian manifolds is derived.
关键词 Volume comparison theorem hausdorff convergence Differentiable sphere theorem Harmonic coordinate Harmonic radius
原文传递
A differentiable sphere theorem with positive Ricci curvature and reverse volume pinching 被引量:1
3
作者 WANG PeiHe1 & WEN YuLiang2 1School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China 2Department of Mathematics, East China Normal University, Shanghai 200241, China 《Science China Mathematics》 SCIE 2011年第3期603-610,共8页
Let Mn be a compact, simply connected n (≥3)-dimensional Riemannian manifold without bound-ary and Sn be the unit sphere Euclidean space Rn+1. We derive a differentiable sphere theorem whenever themanifold concerned ... Let Mn be a compact, simply connected n (≥3)-dimensional Riemannian manifold without bound-ary and Sn be the unit sphere Euclidean space Rn+1. We derive a differentiable sphere theorem whenever themanifold concerned satisfies that the sectional curvature KM is not larger than 1, while Ric(M)≥n+2 4 and the volume V (M) is not larger than (1 + η)V (Sn) for some positive number η depending only on n. 展开更多
关键词 k-th Ricci curvature hausdorff convergence differentiable sphere theorem harmonic coordinate harmonic radius
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部