Letτbe a generalized Thue-Morse substitution on a two-letter alphabet{a,b}:τ(a)=ambm,τ(b)=bmam for the integer m≥2.Letξbe a sequence in{a,b}Z that is generated byτ.We study the one-dimensional Schr?dinger operat...Letτbe a generalized Thue-Morse substitution on a two-letter alphabet{a,b}:τ(a)=ambm,τ(b)=bmam for the integer m≥2.Letξbe a sequence in{a,b}Z that is generated byτ.We study the one-dimensional Schr?dinger operator Hm,λon l2(Z)with a potential given by v(n)=λVξ(n),whereλ>0 is the coupling and Vξ(n)=1(Vξ(n)=-1)ifξ(n)=a(ξ(n)=b).LetΛ2=2,and for m>2,letΛm=m if m≡0 mod 4;letΛm=m-3 if m≡1 mod 4;letΛm=m-2if m≡2 mod 4;letΛm=m-1 if m≡3 mod 4.We show that the Hausdorff dimension of the spectrumσ(Hm,λ)satisfies that dimHσ(Hm,λ)>logΛm/(log 64m+4).It is interesting to see that dimHσσ(Hm,λ)tends to 1 as m tends to infinity.展开更多
For each real number x∈(0,1),let[a_(1)(x),a_(2)(x),…,a_n(x),…]denote its continued fraction expansion.We study the convergence exponent defined byτ(x)=inf{s≥0:∞∑n=1(a_(n)(x)a_(n+1)(x))^(-s)<∞},which reflect...For each real number x∈(0,1),let[a_(1)(x),a_(2)(x),…,a_n(x),…]denote its continued fraction expansion.We study the convergence exponent defined byτ(x)=inf{s≥0:∞∑n=1(a_(n)(x)a_(n+1)(x))^(-s)<∞},which reflects the growth rate of the product of two consecutive partial quotients.As a main result,the Hausdorff dimensions of the level sets ofτ(x)are determined.展开更多
In this paper, the initial boundary value problem of a class of nonlinear generalized Kolmogorov-Petrovlkii-Piskunov equations is studied. The existence and uniqueness of the solution and the bounded absorption set ar...In this paper, the initial boundary value problem of a class of nonlinear generalized Kolmogorov-Petrovlkii-Piskunov equations is studied. The existence and uniqueness of the solution and the bounded absorption set are proved by the prior estimation and the Galerkin finite element method, thus the existence of the global attractor is proved and the upper bound estimate of the global attractor is obtained.展开更多
This paper investigates the fractal dimension of the fractional integrals of a fractal function. It has been proved that there exists some linear connection between the order of Riemann-Liouvile fractional integrals a...This paper investigates the fractal dimension of the fractional integrals of a fractal function. It has been proved that there exists some linear connection between the order of Riemann-Liouvile fractional integrals and the Hausdorff dimension of a fractal function.展开更多
In this paper, we provide a new effective method for computing the exact value of Hausdorff measures of a class of self-similar sets satisfying the open set condition (OSC). As applications, we discuss a self-simila...In this paper, we provide a new effective method for computing the exact value of Hausdorff measures of a class of self-similar sets satisfying the open set condition (OSC). As applications, we discuss a self-similar Cantor set satisfying OSC and give a simple method for computing its exact Hausdorff measure.展开更多
Given n≥2 and α≥1/2,we obtained an improved upbound of Hausdorff's dimension of the fractional Schrodinger operator;that is,supf∈H^(s)(R^(n)) dim_(H){x∈R^(n):limt→0 e^(it)(-△)^(α) f(x)≠f(x)}≤n+1-2(n+1)s/...Given n≥2 and α≥1/2,we obtained an improved upbound of Hausdorff's dimension of the fractional Schrodinger operator;that is,supf∈H^(s)(R^(n)) dim_(H){x∈R^(n):limt→0 e^(it)(-△)^(α) f(x)≠f(x)}≤n+1-2(n+1)s/n for n/2(n+1)<s≤n/2.展开更多
Denote by HD(J(f)) the Hausdorff dimension of the Julia set J(f) of a rational function f. Our first result asserts that if f is an NCP map, and fn → f horocyclically,preserving sub-critical relations, then fn ...Denote by HD(J(f)) the Hausdorff dimension of the Julia set J(f) of a rational function f. Our first result asserts that if f is an NCP map, and fn → f horocyclically,preserving sub-critical relations, then fn is an NCP map for all n ≥≥ 0 and J(fn) →J(f) in the Hausdorff topology. We also prove that if f is a parabolic map and fn is an NCP map for all n ≥≥ 0 such that fn→4 f horocyclically, then J(fn) → J(f) in the Hausdorff topology, and HD(J(fn)) →4 HD(J(f)).展开更多
Let f, g be two parabolic maps of degree ≥ 2. HD(J) denotes the Hausdorff dimension of the Julia set J and m f and m g denote the t-conformal measure supported on the Julia set J(f) and J(g) respectively. In this pap...Let f, g be two parabolic maps of degree ≥ 2. HD(J) denotes the Hausdorff dimension of the Julia set J and m f and m g denote the t-conformal measure supported on the Julia set J(f) and J(g) respectively. In this paper we show that if J(f) and J(g) are locally connected and f and g topologically conjugate, then HD(J(f)) = HD(J(g)), mg = mfoh-1 .展开更多
The authors consider generalized statistically self-affine recursive fractals K with random numbers of subsets on each level. They obtain the Hausdorff dimensions of K without considering whether the subsets on each l...The authors consider generalized statistically self-affine recursive fractals K with random numbers of subsets on each level. They obtain the Hausdorff dimensions of K without considering whether the subsets on each level are non-overlapping or not. They also give some examples to show that many important sets are the special cases of their models.展开更多
Considering the Julia set J(Tλ) of the Yang-Lee zeros of the Potts model on the diamond hierarchical Lattice on the complex plane, the authors proved that HDJ(Tλ) 〉 1 and discussed the continuity of J(Tλ) in...Considering the Julia set J(Tλ) of the Yang-Lee zeros of the Potts model on the diamond hierarchical Lattice on the complex plane, the authors proved that HDJ(Tλ) 〉 1 and discussed the continuity of J(Tλ) in Hausdorff topology for λ∈R.展开更多
More accurate Hausdorff dimension estimations of Julia sets for two simple functions are given by the methods of composition mapping and invariant set of contraction mapping. For quadratic function fc ( z ) = z^2 ...More accurate Hausdorff dimension estimations of Julia sets for two simple functions are given by the methods of composition mapping and invariant set of contraction mapping. For quadratic function fc ( z ) = z^2 + c(c ∈^C), the range of parameter c is expanded largely and a result on the Hausdorff dimension of its Julia set is gained. Similarly, a better result is obtained for cubic function fc(z) = z^3 + c(c ∈ ^C).展开更多
The paper succeeds in the obtaining a class of generalized non-uniform Cantor set based on the iteration (1): Si(x) = αix + bi, x ∈ [0, 1], i = 1,2,…, m, where 0 〈 αi 〈 1, i = 1,2,…,m; bi + αi 〉 0, i =...The paper succeeds in the obtaining a class of generalized non-uniform Cantor set based on the iteration (1): Si(x) = αix + bi, x ∈ [0, 1], i = 1,2,…, m, where 0 〈 αi 〈 1, i = 1,2,…,m; bi + αi 〉 0, i = 1,2,…,m- 1, b1 = 0 and αm + bm = 1. Providing the sufficient and necessary conditions of its existence Hausdorff measure.展开更多
In this paper, we consider the Riesz product dμ =^∞∏j=1(1+ajRexbjλj(x))dx in local fields, and we obtain the upper and lower bound of its Hausdorff dimension.
A class of N-parameter Gaussian processes are introduced, which are more general than the N-parameter Wiener process. The definition of the set generated by exceptional oscillations of a class of these processes is gi...A class of N-parameter Gaussian processes are introduced, which are more general than the N-parameter Wiener process. The definition of the set generated by exceptional oscillations of a class of these processes is given, and then the Hausdorff dimension of this set is defined. The Hausdorff dimensions of these processes are studied and an exact representative for them is given, which is similar to that for the two-parameter Wiener process by Zacharie (2001). Moreover, the time set considered is a hyperrectangle which is more general than a hyper-scluare used by Zacharie (2001). For this more general case, a Fernique-type inequality is established and then using this inequality and the Slepian lemma, a Levy's continuity modulus theorem is shown. Independence of increments is required for showing the representative of the Hausdorff dimension by Zacharie (2001). This property is absent for the processes introduced here, so we have to find a different way.展开更多
All the full Parry measure subsets of a given subshift of finite type determined by an irreducible 0-1 matrix have the same Hausdorrf dimension and Hausdorff measure which coincide with those of the set of finite type.
For Oppenheim series epansions, the authors of [7] discussed the exceptional sets Bm={x∈(0,1]:1〈dj(x)/h(j-1)(d(j-1)(x))≤m for any j ≥2} In this paper, we investigate the Hausdorff dimension of a kind o...For Oppenheim series epansions, the authors of [7] discussed the exceptional sets Bm={x∈(0,1]:1〈dj(x)/h(j-1)(d(j-1)(x))≤m for any j ≥2} In this paper, we investigate the Hausdorff dimension of a kind of exceptional sets occurring in alternating Oppenheim series expansion. As an application, we get the exact Hausdorff dimension of the-set in Luroth series expansion, also we give an estimate of such dimensional number.展开更多
The strength of rock structures strongly depends inter alia on surface irregularities of rock joints. These irregularities are characterized by a coefficient of joint roughness. For its estimation, visual comparison i...The strength of rock structures strongly depends inter alia on surface irregularities of rock joints. These irregularities are characterized by a coefficient of joint roughness. For its estimation, visual comparison is often used. This is rather a subjective method, therefore, fully computerized image recognition procedures were proposed. However, many of them contain imperfections, some of them even mathematical nonsenses and their application can be very dangerous in technical practice. In this paper, we recommend mathematically correct method of fully automatic estimation of the joint roughness coefficient. This method requires only the Barton profiles as a standard.展开更多
In this paper,we consider the graph of the product of continuous functions in terms of Hausdorff and packing dimensions.More precisely,we show that,given a real number 1≤β≤2,any real-valued continuous function in C...In this paper,we consider the graph of the product of continuous functions in terms of Hausdorff and packing dimensions.More precisely,we show that,given a real number 1≤β≤2,any real-valued continuous function in C([0,1])can be decomposed into a product of two real-valued continuous functions,each having a graph of Hausdorff dimensionβ.In addition,a product decomposition result for the packing dimension is obtained.This work answers affirmatively two questions raised by Verma and Priyadarshi[14].展开更多
Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the cla...Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the class of polar functions are studied. Our theorem 1 improves the previous results of Graversen and Legall. Theorem2 solves a problem of Legall (1987) on Brownian motion.展开更多
基金supported by the National Natural ScienceFoundation of China(11871098)。
文摘Letτbe a generalized Thue-Morse substitution on a two-letter alphabet{a,b}:τ(a)=ambm,τ(b)=bmam for the integer m≥2.Letξbe a sequence in{a,b}Z that is generated byτ.We study the one-dimensional Schr?dinger operator Hm,λon l2(Z)with a potential given by v(n)=λVξ(n),whereλ>0 is the coupling and Vξ(n)=1(Vξ(n)=-1)ifξ(n)=a(ξ(n)=b).LetΛ2=2,and for m>2,letΛm=m if m≡0 mod 4;letΛm=m-3 if m≡1 mod 4;letΛm=m-2if m≡2 mod 4;letΛm=m-1 if m≡3 mod 4.We show that the Hausdorff dimension of the spectrumσ(Hm,λ)satisfies that dimHσ(Hm,λ)>logΛm/(log 64m+4).It is interesting to see that dimHσσ(Hm,λ)tends to 1 as m tends to infinity.
基金supported by the Scientific Research Fund of Hunan Provincial Education Department(21B0070)the Natural Science Foundation of Jiangsu Province(BK20231452)+1 种基金the Fundamental Research Funds for the Central Universities(30922010809)the National Natural Science Foundation of China(11801591,11971195,12071171,12171107,12201207,12371072)。
文摘For each real number x∈(0,1),let[a_(1)(x),a_(2)(x),…,a_n(x),…]denote its continued fraction expansion.We study the convergence exponent defined byτ(x)=inf{s≥0:∞∑n=1(a_(n)(x)a_(n+1)(x))^(-s)<∞},which reflects the growth rate of the product of two consecutive partial quotients.As a main result,the Hausdorff dimensions of the level sets ofτ(x)are determined.
文摘In this paper, the initial boundary value problem of a class of nonlinear generalized Kolmogorov-Petrovlkii-Piskunov equations is studied. The existence and uniqueness of the solution and the bounded absorption set are proved by the prior estimation and the Galerkin finite element method, thus the existence of the global attractor is proved and the upper bound estimate of the global attractor is obtained.
文摘This paper investigates the fractal dimension of the fractional integrals of a fractal function. It has been proved that there exists some linear connection between the order of Riemann-Liouvile fractional integrals and the Hausdorff dimension of a fractal function.
基金Supported in part by Education Ministry, Anhui province, China (No. KJ2008A028)
文摘In this paper, we provide a new effective method for computing the exact value of Hausdorff measures of a class of self-similar sets satisfying the open set condition (OSC). As applications, we discuss a self-similar Cantor set satisfying OSC and give a simple method for computing its exact Hausdorff measure.
基金Li Dan and Li Junfeng were supported by NSFC-DFG(11761131002)NSFC(12071052)Xiao Jie was supported by NSERC of Canada(202979463102000).
文摘Given n≥2 and α≥1/2,we obtained an improved upbound of Hausdorff's dimension of the fractional Schrodinger operator;that is,supf∈H^(s)(R^(n)) dim_(H){x∈R^(n):limt→0 e^(it)(-△)^(α) f(x)≠f(x)}≤n+1-2(n+1)s/n for n/2(n+1)<s≤n/2.
文摘Denote by HD(J(f)) the Hausdorff dimension of the Julia set J(f) of a rational function f. Our first result asserts that if f is an NCP map, and fn → f horocyclically,preserving sub-critical relations, then fn is an NCP map for all n ≥≥ 0 and J(fn) →J(f) in the Hausdorff topology. We also prove that if f is a parabolic map and fn is an NCP map for all n ≥≥ 0 such that fn→4 f horocyclically, then J(fn) → J(f) in the Hausdorff topology, and HD(J(fn)) →4 HD(J(f)).
文摘Let f, g be two parabolic maps of degree ≥ 2. HD(J) denotes the Hausdorff dimension of the Julia set J and m f and m g denote the t-conformal measure supported on the Julia set J(f) and J(g) respectively. In this paper we show that if J(f) and J(g) are locally connected and f and g topologically conjugate, then HD(J(f)) = HD(J(g)), mg = mfoh-1 .
基金This research is partly supported by NNSF of China (60204001) the Youth Chengguang Project of Science and Technology of Wuhan City (20025001002)
文摘The authors consider generalized statistically self-affine recursive fractals K with random numbers of subsets on each level. They obtain the Hausdorff dimensions of K without considering whether the subsets on each level are non-overlapping or not. They also give some examples to show that many important sets are the special cases of their models.
基金supported by National Natural Science Foundation of China (10625107)Program for New Century Excellent Talents in University (04-0490)
文摘Considering the Julia set J(Tλ) of the Yang-Lee zeros of the Potts model on the diamond hierarchical Lattice on the complex plane, the authors proved that HDJ(Tλ) 〉 1 and discussed the continuity of J(Tλ) in Hausdorff topology for λ∈R.
文摘More accurate Hausdorff dimension estimations of Julia sets for two simple functions are given by the methods of composition mapping and invariant set of contraction mapping. For quadratic function fc ( z ) = z^2 + c(c ∈^C), the range of parameter c is expanded largely and a result on the Hausdorff dimension of its Julia set is gained. Similarly, a better result is obtained for cubic function fc(z) = z^3 + c(c ∈ ^C).
基金Supported by the Scientific Research of Hanshan Teacher's College(2004)
文摘The paper succeeds in the obtaining a class of generalized non-uniform Cantor set based on the iteration (1): Si(x) = αix + bi, x ∈ [0, 1], i = 1,2,…, m, where 0 〈 αi 〈 1, i = 1,2,…,m; bi + αi 〉 0, i = 1,2,…,m- 1, b1 = 0 and αm + bm = 1. Providing the sufficient and necessary conditions of its existence Hausdorff measure.
文摘In this paper, we consider the Riesz product dμ =^∞∏j=1(1+ajRexbjλj(x))dx in local fields, and we obtain the upper and lower bound of its Hausdorff dimension.
基金Project supported by the National Natural Science Foundation of China(No.10571159)the Doctoral Foundation of Ministry of Education of China(No.20060335032)
文摘A class of N-parameter Gaussian processes are introduced, which are more general than the N-parameter Wiener process. The definition of the set generated by exceptional oscillations of a class of these processes is given, and then the Hausdorff dimension of this set is defined. The Hausdorff dimensions of these processes are studied and an exact representative for them is given, which is similar to that for the two-parameter Wiener process by Zacharie (2001). Moreover, the time set considered is a hyperrectangle which is more general than a hyper-scluare used by Zacharie (2001). For this more general case, a Fernique-type inequality is established and then using this inequality and the Slepian lemma, a Levy's continuity modulus theorem is shown. Independence of increments is required for showing the representative of the Hausdorff dimension by Zacharie (2001). This property is absent for the processes introduced here, so we have to find a different way.
基金The Foundation (A0424619) of National Science Mathematics TanYuan
文摘All the full Parry measure subsets of a given subshift of finite type determined by an irreducible 0-1 matrix have the same Hausdorrf dimension and Hausdorff measure which coincide with those of the set of finite type.
文摘For Oppenheim series epansions, the authors of [7] discussed the exceptional sets Bm={x∈(0,1]:1〈dj(x)/h(j-1)(d(j-1)(x))≤m for any j ≥2} In this paper, we investigate the Hausdorff dimension of a kind of exceptional sets occurring in alternating Oppenheim series expansion. As an application, we get the exact Hausdorff dimension of the-set in Luroth series expansion, also we give an estimate of such dimensional number.
基金The Project LO1202 by financial means from the Ministry of Education, Youth ; Sports under the National Sustainability Programme I
文摘The strength of rock structures strongly depends inter alia on surface irregularities of rock joints. These irregularities are characterized by a coefficient of joint roughness. For its estimation, visual comparison is often used. This is rather a subjective method, therefore, fully computerized image recognition procedures were proposed. However, many of them contain imperfections, some of them even mathematical nonsenses and their application can be very dangerous in technical practice. In this paper, we recommend mathematically correct method of fully automatic estimation of the joint roughness coefficient. This method requires only the Barton profiles as a standard.
基金supported by the NSFC (11701001,11626030)the Support Plan for Outstanding Young Talents in Colleges in Anhui Province (Key project) (gxyqzD2020021)the Scientific Research Project of Colleges and Universities in Anhui Province,2023。
文摘In this paper,we consider the graph of the product of continuous functions in terms of Hausdorff and packing dimensions.More precisely,we show that,given a real number 1≤β≤2,any real-valued continuous function in C([0,1])can be decomposed into a product of two real-valued continuous functions,each having a graph of Hausdorff dimensionβ.In addition,a product decomposition result for the packing dimension is obtained.This work answers affirmatively two questions raised by Verma and Priyadarshi[14].
文摘Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the class of polar functions are studied. Our theorem 1 improves the previous results of Graversen and Legall. Theorem2 solves a problem of Legall (1987) on Brownian motion.