Background Diets rich in starch have been shown to increase a risk of reducing milk fat content in dairy goats.While bile acids(BAs)have been used as a lipid emulsifier in monogastric and aquatic animals,their effect ...Background Diets rich in starch have been shown to increase a risk of reducing milk fat content in dairy goats.While bile acids(BAs)have been used as a lipid emulsifier in monogastric and aquatic animals,their effect on ruminants is not well understood.This study aimed to investigate the impact of BAs supplementation on various aspects of dairy goat physiology,including milk composition,rumen fermentation,gut microbiota,and BA metabolism.Results We randomly divided eighteen healthy primiparity lactating dairy goats(days in milk=100±6 d)into two groups and supplemented them with 0 or 4 g/d of BAs undergoing 5 weeks of feeding on a starch-rich diet.The results showed that BAs supplementation positively influenced milk yield and improved the quality of fatty acids in goat milk.BAs supplementation led to a reduction in saturated fatty acids(C16:0)and an increase in monounsaturated fatty acids(cis-9 C18:1),resulting in a healthier milk fatty acid profile.We observed a significant increase in plasma total bile acid concentration while the proportion of rumen short-chain fatty acids was not affected.Furthermore,BAs supplementation induced significant changes in the composition of the gut microbiota,favoring the enrichment of specific bacterial groups and altering the balance of microbial populations.Correlation analysis revealed associations between specific bacterial groups(Bacillus and Christensenellaceae R-7 group)and BA types,suggesting a role for the gut microbiota in BA metabolism.Functional prediction analysis revealed notable changes in pathways associated with lipid metabolism,suggesting that BAs supplementation has the potential to modulate lipid-related processes.Conclusion These findings highlight the potential benefits of BAs supplementation in enhancing milk production,improving milk quality,and influencing metabolic pathways in dairy goats.Further research is warranted to elucidate the underlying mechanisms and explore the broader implications of these findings.展开更多
Background:SCNT(somatic cell nuclear transfer)is of great significance to biological research and also to the livestock breeding.However,the survival rate of the SCNT cloned animals is relatively low compared to other...Background:SCNT(somatic cell nuclear transfer)is of great significance to biological research and also to the livestock breeding.However,the survival rate of the SCNT cloned animals is relatively low compared to other transgenic methods.This indicates the potential epigenetic variations between them.DNA methylation is a key marker of mammalian epigenetics and its alterations will lead to phenotypic differences.In this study,ASMT(acetylserotonin-Omethyltransferase)ovarian overexpression transgenic goat was produced by using SCNT.To investigate whether there are epigenetic differences between cloned and WT(wild type)goats,WGBS(whole-genome bisulfite sequencing)was used to measure the whole-genome methylation of these animals.Results:It is observed that the different m Cp G sites are mainly present in the intergenic and intronic regions between cloned and WT animals,and their CG-type methylation sites are strongly correlated.DMR(differentially methylated region)lengths are located around 1000 bp,mainly distributed in the exonic,intergenic and intronic functional domains.A total of 56 and 36 DMGs(differentially methylated genes)were identified by GO and KEGG databases,respectively.Functional annotation showed that DMGs were enriched in biological-process,cellularcomponent,molecular-function and other signaling pathways.A total of 10 identical genes related to growth and development were identified in GO and KEGG databases.Conclusion:The differences in methylation genes among the tested animals have been identified.A total of 10 DMGs associated with growth and development were identified between cloned and WT animals.The results indicate that the differential patterns of DNA methylation between the cloned and WT goats are probably caused by the SCNT.These novel observations will help us to further identify the unveiled mechanisms of somatic cell cloning technology,particularly in goats.展开更多
Endometrial development is a complicated process involving numerous regulatory factors.Circular RNAs(circRNAs)have been known as a member of the naturally occurring non-coding RNA family,and are reportedly crucial for...Endometrial development is a complicated process involving numerous regulatory factors.Circular RNAs(circRNAs)have been known as a member of the naturally occurring non-coding RNA family,and are reportedly crucial for a variety of physiological processes.This study investigated the circRNA landscape of non-pregnant endometrium of dairy goats during estrus.Non-pregnant endometrial samples of goats at estrus day 5(Ed5)and estrus day 15(Ed15)were used to methodically analyze the circRNA landscape using strand-specific Ribo-Zero RNA-Seq.A total of 2331 differentially expressed(P<0.05)circRNAs(DEciRs)between Ed5 and Ed15 were discovered in the goat endometrium.It was found that Nipped-B-like(NIPBL)and calcium responsive transcription factor(CARF)may participate in the development of the endometrium by decreasing(P<0.05)the levels of their circRNA-transcript forms.Furthermore,Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)analyses of DEciR host genes(hgDEciRs)revealed that tight junctions and GTPases may be involved in endometrial development during the estrus cycle.A total of 2331 DEciRs were discovered in the endometrium at Ed5 and Ed15.Based on GO and KEGG enrichment analyses,it could be inferred that tight junctions and GTPases are likely to play an important role in the development of goat endometrium during the estrus cycle.This circRNA study greatly enhances our knowledge of global trends in the development of non-pregnant endometrium during the estrus cycle in goats;these results help us to better understand the molecular regulation of endometrial development in dairy goats.展开更多
Background: Identifying associations between genetic markers and traits of economic importance will provide practical benefits for the dairy goat industry, enabling genomic prediction of the breeding value of individu...Background: Identifying associations between genetic markers and traits of economic importance will provide practical benefits for the dairy goat industry, enabling genomic prediction of the breeding value of individuals, and facilitating discovery of the underlying genes and mutations. Genome-wide association studies were implemented to detect genetic regions that are significantly associated with effects on lactation yields of milk(MY), fat(FY),protein(PY) and somatic cell score(SCS) in New Zealand dairy goats.Methods: A total of 4,840 goats were genotyped with the Caprine 50 K SNP chip(Illumina Inc., San Diego, CA).After quality filtering, 3,732 animals and 41,989 SNPs were analysed assuming an additive linear model. Four GWAS models were performed, a single-SNP additive linear model and three multi-SNP Bayes C models. For the single-SNP GWAS, SNPs were fitted individually as fixed covariates, while the Bayes C models fit all SNPs simultaneously as random effects. A cluster of significant SNPs were used to define a haplotype block whose alleles were fitted as covariates in a Bayesian model. The corresponding diplotypes of the haplotype block were then fit as class variables in another Bayesian model.Results: Across all four traits, a total of 43 genome-wide significant SNPs were detected from the SNP GWAS. At a genome-wide significance level, the single-SNP analysis identified a cluster of variants on chromosome 19 associated with MY, FY, PY, and another cluster on chromosome 29 associated with SCS. Significant SNPs mapped in introns of candidate genes(45%), in intergenic regions(36%), were 0–5 kb upstream or downstream of the closest gene(14%) or were synonymous substitutions(5%). The most significant genomic window was located on chromosome 19 explaining up to 9.6% of the phenotypic variation for MY, 8.1% for FY, 9.1% for PY and 1% for SCS.Conclusions: The quantitative trait loci for yield traits on chromosome 19 confirms reported findings in other dairy goat populations. There is benefit to be gained from using these results for genomic selection to improve milk production in New Zealand dairy goats.展开更多
Paired-like homeodomain transcription factor 1 (PITX1) plays an important role in pituitary development by indirectly regulating the expression of the GH and PRL genes, and therefore PITX1 gene is regarded as a pote...Paired-like homeodomain transcription factor 1 (PITX1) plays an important role in pituitary development by indirectly regulating the expression of the GH and PRL genes, and therefore PITX1 gene is regarded as a potential candidate gene for building the relationship between the gene polymorphism and milk traits. The aim of this study was to explore the novel genetic variant in PITX1 gene and its effect on milk performance in dairy goats. Herein, a novel genetic variation (NW_00314033: g.201GA or IVS1+41GA) located at nt41 position of the first intron of the goat PITX1 gene was reported at the P1 locus, which can be genotyped by the Msp I PCR-RFLP. In the Msp I PCR-RFLP analyis, the GG variant was a major genotype, and the A variant was a minor allele in Guanzhong dairy goats which was at Hardy-Weinberg disequilibrium (chi-square χ2=140, P0.01). The establishment of associations between different genotypes and milk performance was performed in the analyzed population. A total of three significant associations of the polymorphism with average milk fat content (%) (P=0.045), morning milk fat content (%) (P=0.049), and afternoon milk fat content (%) (P=0.050), were found, respectively. A significant relationship between the polymorphism and average total solid content (P=0.029) was also detected. This novel single nucleotide polymorphism (SNP) extended the spectrum of genetic variation of the goat PITX1 gene, and its significant association with milk performance would benefit from the application of DNA markers related to improving milk performance through marker-assisted selection (MAS) in dairy goats.展开更多
Background:Goat milk is very similar to human milk in terms of its abundant nutrients and ease of digestion.To derive greater economic benefit,farmers require more female offspring(does);however,the buck-to-doe offspr...Background:Goat milk is very similar to human milk in terms of its abundant nutrients and ease of digestion.To derive greater economic benefit,farmers require more female offspring(does);however,the buck-to-doe offspring sex ratio is approximately 50%.At present,artificial insemination after the separation of X/Y sperm using flow cytometry is the primary means of controlling the sex of livestock offspring.However,flow cytometry has not been successfully utilised for the separation of X/Y sperm aimed at sexing control in dairy goats.Results:In this study,a novel,simple goat sperm sexing technology that activates the toll-like receptor 7/8(TLR7/8),thereby inhibiting X-sperm motility,was investigated.Our results showed that the TLR7/8 coding goat Xchromosome was expressed in approximately 50%of round spermatids in the testis and sperm,as measured from cross-sections of the epididymis and ejaculate,respectively.Importantly,TLR7/8 was located at the tail of the Xsperm.Upon TLR7/8 activation,phosphorylated forms of glycogen synthase kinaseα/β(GSK3α/β)and nuclear factor kappa-B(NF-κB)were detected in the X-sperm,causing reduced mitochondrial activity,ATP levels,and sperm motility.High-motility Y-sperm segregated to the upper layer and the low-motility X-sperm,to the lower layer.Following in vitro fertilisation using the TLR7/8-activated sperm from the lower layer,80.52±6.75%of the embryos were XX females.The TLR7/8-activated sperm were subsequently used for in vivo embryo production via the superovulatory response;nine embryos were collected from the uterus of two does that conceived.Eight of these were XX embryos,and one was an XY embryo.Conclusions:Our study reveals a novel TLR7/8 signalling mechanism that affects X-sperm motility via the GSK3α/β-hexokinase pathway;this technique could be used to facilitate the efficient production of sexed dairy goat embryos.展开更多
This study aimed to compare the efficiencies of clustered regulatory interspaced short palindromic repeat(CRISPR)/Cas9-mediated gene knock-ins with zinc finger nucleases(ZFNs) and transcription activator-like effe...This study aimed to compare the efficiencies of clustered regulatory interspaced short palindromic repeat(CRISPR)/Cas9-mediated gene knock-ins with zinc finger nucleases(ZFNs) and transcription activator-like effector nucleases(TALENs) in bovine and dairy goat fetal fibroblasts. To test the knock-in efficiency, a set of ZFNs and CRISPR/Cas9 plasmids were designed to edit the bovine myostatin(MSTN) gene at exon 2, while a set of TALENs and CRISPR/Cas9 plasmids were designed for editing the dairy goat β-casein gene at exon 2. Donor plasmids utilizing the ZFNs, TALENs, and CRISPR/Cas9 cutting sites were constructed in theGFP-PGK-Neo R plasmid background, including a 5′ and 3′ homologous arm flanking the genes humanized Fat-1(h Fat-1) or enhanced green fluorescent protein(eGFP). Subsequently, the ZFNs, TALENs, or CRISPR/Cas9 and thehFat-1 or eGFP plasmids were co-transfected by electroporation into bovine and dairy goat fetal fibroblasts. After G418(Geneticin) selection, single cells were obtained by mouth pipetting, flow cytometry or a cell shove. The gene knock-in events were screened by PCR across the homologous arms. The results showed that in bovine fetal fibrobalsts, the efficiencies of ZFNs-mediated eGFP andhFat-1 gene knock-ins were 13.68 and 0%, respectively. The efficiencies of CRISPR/Cas9-mediated eGFP andhFat-1 gene knock-ins were 77.02 and 79.01%, respectively. The eGFP gene knock-in efficiency using CRISPR/Cas9 was about 5.6 times higher than when using the ZFNs gene editing system. Additionally, thehFat-1 gene knock-in was only obtained when using the CRISPR/Cas9 system. The difference of knockin efficiencies between the ZFNs and CRISPR/Cas9 systems were extremely significant(P〈0.01). In the dairy goat fetal fibroblasts, the efficiencies of TALENs-mediated eGFP andhFat-1 gene knock-ins were 32.35 and 26.47%, respectively. Theefficiencies of eGFP and hFat-1 gene knock-ins using CRISPR/Cas9 were 70.37 and 74.29%, respectively. The knock-in efficiencies difference between the TALENs and CRISPR/Cas9 systems were extremely significant(P〈0.01). This study demonstrated that CRISPR/Cas9 was more efficient at gene knock-ins in domesticated animal cells than ZFNs and TALENs. The CRISPR/Cas9 technology offers a new era of precise gene editing in domesticated animal cell lines.展开更多
Background:In recent years,nitrooxy compounds have been identified as promising inhibitors of methanogenesis in ruminants.However,when animals receive a nitrooxy compound,a high portion of the spared hydrogen is eruct...Background:In recent years,nitrooxy compounds have been identified as promising inhibitors of methanogenesis in ruminants.However,when animals receive a nitrooxy compound,a high portion of the spared hydrogen is eructated as gas,which partly offsets the energy savings of CH4mitigation.The objective of the present study was to evaluate the long-term and combined effects of supplementation with N-[2-(nitrooxy)ethyl]-3-pyridinecarboxamide(NPD),a methanogenesis inhibitor,and fumaric acid(FUM),a hydrogen sink,on enteric CH4production,rumen fermentation,bacterial populations,apparent nutrient digestibility,and lactation performance of dairy goats.Results:Twenty-four primiparous dairy goats were used in a randomized complete block design with a 2×2factorial arrangement of treatments:supplementation without or with FUM(32 g/d)or NPD(0.5 g/d).All samples were collected every 3 weeks during a 12-week feeding experiment.Both FUM and NPD supplementation persistently inhibited CH4yield(L/kg DMI,by 18.8%and 18.1%,respectively)without negative influence on DMI or apparent nutrient digestibility.When supplemented in combination,no additive CH4suppression was observed.FUM showed greater responses in increasing the molar proportion of propionate when supplemented with NPD than supplemented alone(by 10.2%vs.4.4%).The rumen microbiota structure in the animals receiving FUM was different from that of the other animals,particularly changed the structure of phylum Firmicutes.Daily milk production and serum total antioxidant capacity were improved by NPD,but the contents of milk fat and protein were decreased,probably due to the bioactivity of absorbed NPD on body metabolism.Conclusions:Supplementing NPD and FUM in combination is a promising way to persistently inhibit CH4emissions with a higher rumen propionate proportion.However,the side effects of this nitrooxy compound on animals and its residues in animal products need further evaluation before it can be used as an animal feed additive.展开更多
Mammary epithelial cells with lactational function can be a valuable cellular model for research of the development and regulation of the mammary gland.This paper describes some aspects of function of an epithelial ce...Mammary epithelial cells with lactational function can be a valuable cellular model for research of the development and regulation of the mammary gland.This paper describes some aspects of function of an epithelial cell line from the mammary gland of the dairy goat.SDS-PAGE,triglyceride and lactose content of cultured cells were used to assess synthetic function of cells and the effects of exposure to insulin and prolactin.Results show that goat mammary epithelial cells can synthesize fat,proteins and lactose when they were cultured in DMEM-F12 medium with added EGF,IGF-1,ITS and FBS.There were no obvious changes after 48h treatment with additional insulin.Prolactin added to the basal medium significantly increased synthesis of proteins and lactose.A mammary gland epithelial cell line from goats which has lactational function has been established.This outcome provides a valuable and convenient model system.展开更多
The experiment was conducted to determine effects of different dietary cation-anion difference(DCAD) in diets on ruminal fluid pH and fiber degradation in rumen of Laoshan dairy goats. A 4×4 latin square design...The experiment was conducted to determine effects of different dietary cation-anion difference(DCAD) in diets on ruminal fluid pH and fiber degradation in rumen of Laoshan dairy goats. A 4×4 latin square design was adopted. DCAD in different groups was 0, 50, 100, 200 mEq·kg^-1 of DM, respectively. The results of ruminal pH indicated that different DCAD could significantly influence the ruminal pH (P〈0.05) and ruminal fluid pH increased as DCAD increased from 0 to 200 mEq·kg^-1 of DM at different sampling time-points. There was no effect of DCAD on carboxymethyl cellulase in ruminal fluid at 4 h and 8 h postfeeding (P〉0.05). Degradation ofNDF, ADF, CF peaked at a DCAD of 100 mEq·kg^-1 of DM. It could be concluded that DCAD of 100 mEq·kg^-1 of DM was advantage to non-pregnancy, non-lactication Laoshan dairy goat.展开更多
The lactating mammary gland is a prodigious protein-producing factory, but the milk protein synthesis mechanisms are not well understood. The major objective of this paper was to elucidate which genes and pathways wer...The lactating mammary gland is a prodigious protein-producing factory, but the milk protein synthesis mechanisms are not well understood. The major objective of this paper was to elucidate which genes and pathways were involved in the regulation of milk protein synthesis in the dairy goat mammary gland. Total 36 primiparous Guanzhong dairy goats were allotted in 12 groups according to their mammary development stages: days 90 and 150 of virgin, days 30, 90, and 150 of pregnancy, days 1, 10, 35, and 60 of lactation and days 3, 7, and 21 of involution (three animals per group). Mammary tissue RNA was isolated for quantitative real- time RT-PCR of four casein genes alpha-s 1 casein (CSN 1S 1 ), alpha-s2 casein (CSN 1 S2), beta-casein (CSN2) and casein kappa (CSN3), four whey protein genes lactoglobulin (LGB), laetalbumin (LALBA), laetofarrin (LTF), and Whey acidic protein (WAP) and the genes which were potentially to regulate dairy goat milk protein synthesis at the level of transcription or translation [prolactin receptor (PRLR), AKT1, signal transducers and activators of transcription 5 (STAT5), E74-Like Factor 5 (ELF5), eukaryotic translation initiation factor 4E binding protein 1 (EIF4E-BP1), S6kinase (S6K) and caveolin 1]. The results showed that all genes were up-regulated in lactation period. The expressions of PRLR, AKT1, STAT5, ELF5, and S6K were similar to mRNA expressions of milk proteins. Our results indicated that milk protein synthesis in dairy goat mammary gland was possibly regulated by these genes.展开更多
This article explores a technique for measuring the energy (NEL) value of feeds without respiration calorimetry or slaughter. The objectives were to compare results obtained from goats with those from cows, and to des...This article explores a technique for measuring the energy (NEL) value of feeds without respiration calorimetry or slaughter. The objectives were to compare results obtained from goats with those from cows, and to describe factors which limited the precision of these NEL estimates. One lactating Alpine doe and one lactateing Holstein cow were assigned to each of six different sequences of three 56-d feeding treatments consisting of low, medium, and high doses of the basal diet, rice bran, or hominy feed. This resulted in 30 observations of the basal diet and 12 of each byproduct feed for each species and utilized a total of 18 cows and 18 does. The NEL values of the basal diet, rice bran, and hominy feed were calculated as the sum of milk energy, change in body energy, and estimated fasting heat production per kilogram of feed dry matter. Milk energy was determined by bomb calorimetry and body energy from live body weight and deuterium oxide space. The NEL (MJ/kg) determined in this manner were basal diet, 5.73 and 5.98;rice bran, 7.11 and 7.07;and hominy feed, 6.99 and 8.20 for cows and goats, respectively.展开更多
Lactation curves are a graphical representation of the milk production profile of a doe from parturition to drying up. Their shape provides information about the productivity of the doe and offers a means of explainin...Lactation curves are a graphical representation of the milk production profile of a doe from parturition to drying up. Their shape provides information about the productivity of the doe and offers a means of explaining features of the milk production patterns of each animal. A total of 2732 daily morning milk records from 610 does of the Kenyan Alpine dairy goats’ genetic groups (50% Alpine, 75% Alpine, 87.5% Alpine and > 87.5% Alpine) and local goats (0% Alpine) kept in small-holder farms were used to evaluate factors affecting milk yield and to examine the characteristics of their lactation curve. A nonlinear mixed model was used to fit the lactation curves to all does simultaneously. The Wood’s (1967) equation was fitted within each genetic group and parity to generate genetic group and parity lactation curves. The mean lactation period was 218 ± 46 days and the model accounted for 88% of the total variation. Significant differences (P 87.5% Alpine genetic groups respectively. Genetic group did not significantly affect rate of increase to peak yield (P > 0.05) and rate of decline from peak (P > 0.05) or persistency (P > 0.05). Parity significantly affected rate of increase to peak, rate of decrease from peak and persistency (P < 0.01). The month of kidding significantly affected the rate of increase to peak (P < 0.05) and persistency, but not rate of decrease from peak. The synchronization of breeding with season has a practical implication for the maximization of lactation yield when considered in combination with other biological and economic constraints. The superior production of the pedigree animals supports the development of composite breed types in Kenya to take advantage of the fitness of indigenous breeds, the productivity of imported dairy breeds, heterosis, and the potential for selection within the composite to improve productivity in later generations.展开更多
The experiment was conducted to investigate the effect of transfer of PUFA protected and carnitin precursor on the ration of chemical composition of milk dairy goat. In total, 10 female dairy goats of 2 - 4 years old ...The experiment was conducted to investigate the effect of transfer of PUFA protected and carnitin precursor on the ration of chemical composition of milk dairy goat. In total, 10 female dairy goats of 2 - 4 years old Peranakan Etawah (PE) with body weight of 25 - 45 kg were used in this experiment. The feed material included a basal diet (control) based on yellow corn, rice bran, soya bean meal, coconut meal, tuna fish oil and lemuru fish oil. The method of the research was experimental in vivo using Randomized Completely Block Design (RCBD). There were 5 treatments in each experiment and 2 replications. The treatment consisted of P0 = control ration, P1 = P0 + 200 ppm L-carnitine on the ration, P2 = P1 + soya bean oil, P3 = P1 + protected tuna fish oil 5 ml or equal with 4% in the ration, and P4 = P1 + protected lemuru fish oil 5 ml or equal with 4% in the ration. The measured variable is chemical composition of milk dairy goat. The results of variance analysis showed that the effect of transfer of PUFA fatty acid in the rations contained 200 ppm L-carnitine significantly展开更多
A study was conducted in three cluster regions in Kenya where the Alpine,Toggenburg and Saanen dairy goat breeds,respectively,were kept.The objective was to determine the breeds’relative performance for use as a basi...A study was conducted in three cluster regions in Kenya where the Alpine,Toggenburg and Saanen dairy goat breeds,respectively,were kept.The objective was to determine the breeds’relative performance for use as a basis of their recommendation to farmers.Formal questionnaires were used to obtain information on farm sizes,dairy goat sources,reasons for keeping the dairy goats,goat milk production,amount of feed offered to the goats and the constraints faced.Further information on the actual milk production and live weights of the milking does was collected directly from the farms using hired recorders.Results indicated that the dairy goats were fed between 6 kg/goat/day and 17 kg/goat/day of forage.They had a low production average of 1.4 L milk/goat/day with no clear cut breed differences.Toggenburg milking does were significantly(p<0.05)heavier than the other breeds(48.3 vs.38.0 and 39.0 kg for the Alpine and Saanen dairy goats,respectively).The milk production and goat live weights were below their reported potential.Feed shortage in the dry season was a major constraint.It was concluded that farmers could keep any of the three breeds.It was recommended that data on the comparative performance from the three breeds be generated to guide on farmer choices.Governments receiving donor support on agricultural endeavours should put in place the technical and policy mechanisms to support the ventures after the donor exits,and also ensure recommendations by different donors on a technical issue are consistent and complementary.展开更多
The goals of this study were to determine the weekly milk production of Saanen goats at UniSZA Pasir Akar Farm,and to evaluate milk production and composition in three age groups.From January 2021 to May 2021,a study ...The goals of this study were to determine the weekly milk production of Saanen goats at UniSZA Pasir Akar Farm,and to evaluate milk production and composition in three age groups.From January 2021 to May 2021,a study was conducted at the UniSZA Pasir Akar Farm in Besut,Terengganu.Ninety goat milk samples were collected and stored in sterile falcon tubes.Milk samples were stored in an insulated box at 5℃ before being transported to the laboratory and stored at-20℃ until further analysis.Milk samples were analyzed in four replicates for each sample group using the Milkotester.The one-way analysis of variance(ANOVA)method was used to analyze raw data among age groups,with p<0.05 indicating a significant difference.The highest milk yield was produced by four-year-old goats(943.9 g/d),followed by three-year-old goats(850.5 g/d)and two-year-old goats(571.1 g/d),respectively.Solid non-fat(SNF),protein,and lactose content showed the highest in percentage in the 3-year old group,at 7.80%,2.80%,and 4.27%,respectively.However,the fat content revealed an unusual pattern,with 2.87%,2.77%,and 3.33%representing 2,3 and 4 years old.This occurred due to other factors such as feed,breed,and age.In conclusion,this study found a significant difference in milk yield and composition across three age groups.However,this is only a preliminary result based on a small number of animals and a short study period.Future studies will perhaps,use larger sample sizes and parameters to validate the current result.展开更多
Isabel grape(IG)products have high contents of phenolic compounds and fiber recognized for their positive impacts on microorganisms associated with health benefits to host.This study evaluated the effects of goat yogu...Isabel grape(IG)products have high contents of phenolic compounds and fiber recognized for their positive impacts on microorganisms associated with health benefits to host.This study evaluated the effects of goat yogurts formulated with ingredients from IG integral valorization on the growth and metabolism of different probiotic strains,as well as on the population of selected bacterial groups and metabolic activity of human colonic microbiota in vitro.Goat yogurts with IG ingredients(IGI)stimulated the growth of tested Lactobacillus and Bifidobacterium probiotic strains during a 48-h cultivation,as well as decreased the pH values and enhanced the organic acid production.Goat yogurts with IGI increased the population of Lactobacillus spp.and Bifidobacterium spp.during a 24-h in vitro colonic fermentation.A stable Firmicutes:Bacteroidetes ratio close to 1 was found in media with goat yogurt formulations during the colonic fermentation,being similar to the effect caused by fructooligosaccharides.Goat yogurt formulations with IGI caused increased production of short-chain fatty acids and sugar consumption during colonic fermentation.Goat yogurts with IGI should be a valuable strategy for development of novel added-value foods with beneficial effects on gut microbiota and human health.展开更多
基金funded by grants from the National Natural Science Foundation of China(grant number 32072761,32102570)Shaanxi Livestock and Poultry Breeding Double-chain Fusion Key Project(grant number 2022GDTSLD-46-0501)the fellowship of China Postdoctoral Science Foundation(grant number 2021M702691).
文摘Background Diets rich in starch have been shown to increase a risk of reducing milk fat content in dairy goats.While bile acids(BAs)have been used as a lipid emulsifier in monogastric and aquatic animals,their effect on ruminants is not well understood.This study aimed to investigate the impact of BAs supplementation on various aspects of dairy goat physiology,including milk composition,rumen fermentation,gut microbiota,and BA metabolism.Results We randomly divided eighteen healthy primiparity lactating dairy goats(days in milk=100±6 d)into two groups and supplemented them with 0 or 4 g/d of BAs undergoing 5 weeks of feeding on a starch-rich diet.The results showed that BAs supplementation positively influenced milk yield and improved the quality of fatty acids in goat milk.BAs supplementation led to a reduction in saturated fatty acids(C16:0)and an increase in monounsaturated fatty acids(cis-9 C18:1),resulting in a healthier milk fatty acid profile.We observed a significant increase in plasma total bile acid concentration while the proportion of rumen short-chain fatty acids was not affected.Furthermore,BAs supplementation induced significant changes in the composition of the gut microbiota,favoring the enrichment of specific bacterial groups and altering the balance of microbial populations.Correlation analysis revealed associations between specific bacterial groups(Bacillus and Christensenellaceae R-7 group)and BA types,suggesting a role for the gut microbiota in BA metabolism.Functional prediction analysis revealed notable changes in pathways associated with lipid metabolism,suggesting that BAs supplementation has the potential to modulate lipid-related processes.Conclusion These findings highlight the potential benefits of BAs supplementation in enhancing milk production,improving milk quality,and influencing metabolic pathways in dairy goats.Further research is warranted to elucidate the underlying mechanisms and explore the broader implications of these findings.
基金Key Research and Development Project of Hainan Province(ZDYF2021XDNY174)Science and Technology Major Project of Inner Mongolia(2021ZD0023–1)National Transgenic Key Project of the Ministry of Agriculture of China(2018ZX0800801B)。
文摘Background:SCNT(somatic cell nuclear transfer)is of great significance to biological research and also to the livestock breeding.However,the survival rate of the SCNT cloned animals is relatively low compared to other transgenic methods.This indicates the potential epigenetic variations between them.DNA methylation is a key marker of mammalian epigenetics and its alterations will lead to phenotypic differences.In this study,ASMT(acetylserotonin-Omethyltransferase)ovarian overexpression transgenic goat was produced by using SCNT.To investigate whether there are epigenetic differences between cloned and WT(wild type)goats,WGBS(whole-genome bisulfite sequencing)was used to measure the whole-genome methylation of these animals.Results:It is observed that the different m Cp G sites are mainly present in the intergenic and intronic regions between cloned and WT animals,and their CG-type methylation sites are strongly correlated.DMR(differentially methylated region)lengths are located around 1000 bp,mainly distributed in the exonic,intergenic and intronic functional domains.A total of 56 and 36 DMGs(differentially methylated genes)were identified by GO and KEGG databases,respectively.Functional annotation showed that DMGs were enriched in biological-process,cellularcomponent,molecular-function and other signaling pathways.A total of 10 identical genes related to growth and development were identified in GO and KEGG databases.Conclusion:The differences in methylation genes among the tested animals have been identified.A total of 10 DMGs associated with growth and development were identified between cloned and WT animals.The results indicate that the differential patterns of DNA methylation between the cloned and WT goats are probably caused by the SCNT.These novel observations will help us to further identify the unveiled mechanisms of somatic cell cloning technology,particularly in goats.
基金the China Postdoctoral Science Foundation(2019M653776,2020M673516)the National Key Research and Development Program of China(2016YFD0500508)+1 种基金the Natural Science Foundation of Shaanxi Province,China(2020JQ-265)the PhD research startup foundation of Northwest A&F University,China(00400/Z109021811)。
文摘Endometrial development is a complicated process involving numerous regulatory factors.Circular RNAs(circRNAs)have been known as a member of the naturally occurring non-coding RNA family,and are reportedly crucial for a variety of physiological processes.This study investigated the circRNA landscape of non-pregnant endometrium of dairy goats during estrus.Non-pregnant endometrial samples of goats at estrus day 5(Ed5)and estrus day 15(Ed15)were used to methodically analyze the circRNA landscape using strand-specific Ribo-Zero RNA-Seq.A total of 2331 differentially expressed(P<0.05)circRNAs(DEciRs)between Ed5 and Ed15 were discovered in the goat endometrium.It was found that Nipped-B-like(NIPBL)and calcium responsive transcription factor(CARF)may participate in the development of the endometrium by decreasing(P<0.05)the levels of their circRNA-transcript forms.Furthermore,Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)analyses of DEciR host genes(hgDEciRs)revealed that tight junctions and GTPases may be involved in endometrial development during the estrus cycle.A total of 2331 DEciRs were discovered in the endometrium at Ed5 and Ed15.Based on GO and KEGG enrichment analyses,it could be inferred that tight junctions and GTPases are likely to play an important role in the development of goat endometrium during the estrus cycle.This circRNA study greatly enhances our knowledge of global trends in the development of non-pregnant endometrium during the estrus cycle in goats;these results help us to better understand the molecular regulation of endometrial development in dairy goats.
基金funded by the Dairy Goat Co-operative,New Zealand。
文摘Background: Identifying associations between genetic markers and traits of economic importance will provide practical benefits for the dairy goat industry, enabling genomic prediction of the breeding value of individuals, and facilitating discovery of the underlying genes and mutations. Genome-wide association studies were implemented to detect genetic regions that are significantly associated with effects on lactation yields of milk(MY), fat(FY),protein(PY) and somatic cell score(SCS) in New Zealand dairy goats.Methods: A total of 4,840 goats were genotyped with the Caprine 50 K SNP chip(Illumina Inc., San Diego, CA).After quality filtering, 3,732 animals and 41,989 SNPs were analysed assuming an additive linear model. Four GWAS models were performed, a single-SNP additive linear model and three multi-SNP Bayes C models. For the single-SNP GWAS, SNPs were fitted individually as fixed covariates, while the Bayes C models fit all SNPs simultaneously as random effects. A cluster of significant SNPs were used to define a haplotype block whose alleles were fitted as covariates in a Bayesian model. The corresponding diplotypes of the haplotype block were then fit as class variables in another Bayesian model.Results: Across all four traits, a total of 43 genome-wide significant SNPs were detected from the SNP GWAS. At a genome-wide significance level, the single-SNP analysis identified a cluster of variants on chromosome 19 associated with MY, FY, PY, and another cluster on chromosome 29 associated with SCS. Significant SNPs mapped in introns of candidate genes(45%), in intergenic regions(36%), were 0–5 kb upstream or downstream of the closest gene(14%) or were synonymous substitutions(5%). The most significant genomic window was located on chromosome 19 explaining up to 9.6% of the phenotypic variation for MY, 8.1% for FY, 9.1% for PY and 1% for SCS.Conclusions: The quantitative trait loci for yield traits on chromosome 19 confirms reported findings in other dairy goat populations. There is benefit to be gained from using these results for genomic selection to improve milk production in New Zealand dairy goats.
基金funded by the National Natural Science Foundation of China (31172184)the Young New Star Project on Science & Technology of Shaanxi Province, China(2011kjxx64)+2 种基金the Natural Science Foundation of Shaanxi Province of China (2011JQ3009)the Young Topnotch Researcher Support Project of Northwest A&F University,China (QNGG-2009-007)the Special Fund for Basic Scientific Research and Operation Expenses in Sci-Tech Innovation of Northwest A&F University, China(QN2011102)
文摘Paired-like homeodomain transcription factor 1 (PITX1) plays an important role in pituitary development by indirectly regulating the expression of the GH and PRL genes, and therefore PITX1 gene is regarded as a potential candidate gene for building the relationship between the gene polymorphism and milk traits. The aim of this study was to explore the novel genetic variant in PITX1 gene and its effect on milk performance in dairy goats. Herein, a novel genetic variation (NW_00314033: g.201GA or IVS1+41GA) located at nt41 position of the first intron of the goat PITX1 gene was reported at the P1 locus, which can be genotyped by the Msp I PCR-RFLP. In the Msp I PCR-RFLP analyis, the GG variant was a major genotype, and the A variant was a minor allele in Guanzhong dairy goats which was at Hardy-Weinberg disequilibrium (chi-square χ2=140, P0.01). The establishment of associations between different genotypes and milk performance was performed in the analyzed population. A total of three significant associations of the polymorphism with average milk fat content (%) (P=0.045), morning milk fat content (%) (P=0.049), and afternoon milk fat content (%) (P=0.050), were found, respectively. A significant relationship between the polymorphism and average total solid content (P=0.029) was also detected. This novel single nucleotide polymorphism (SNP) extended the spectrum of genetic variation of the goat PITX1 gene, and its significant association with milk performance would benefit from the application of DNA markers related to improving milk performance through marker-assisted selection (MAS) in dairy goats.
基金This research was supported by the National Natural Science Foundation of China(31672425)Shaanxi Province Key R&D Program(2018ZDXM-NY-043,2020ZDLNY02–04).
文摘Background:Goat milk is very similar to human milk in terms of its abundant nutrients and ease of digestion.To derive greater economic benefit,farmers require more female offspring(does);however,the buck-to-doe offspring sex ratio is approximately 50%.At present,artificial insemination after the separation of X/Y sperm using flow cytometry is the primary means of controlling the sex of livestock offspring.However,flow cytometry has not been successfully utilised for the separation of X/Y sperm aimed at sexing control in dairy goats.Results:In this study,a novel,simple goat sperm sexing technology that activates the toll-like receptor 7/8(TLR7/8),thereby inhibiting X-sperm motility,was investigated.Our results showed that the TLR7/8 coding goat Xchromosome was expressed in approximately 50%of round spermatids in the testis and sperm,as measured from cross-sections of the epididymis and ejaculate,respectively.Importantly,TLR7/8 was located at the tail of the Xsperm.Upon TLR7/8 activation,phosphorylated forms of glycogen synthase kinaseα/β(GSK3α/β)and nuclear factor kappa-B(NF-κB)were detected in the X-sperm,causing reduced mitochondrial activity,ATP levels,and sperm motility.High-motility Y-sperm segregated to the upper layer and the low-motility X-sperm,to the lower layer.Following in vitro fertilisation using the TLR7/8-activated sperm from the lower layer,80.52±6.75%of the embryos were XX females.The TLR7/8-activated sperm were subsequently used for in vivo embryo production via the superovulatory response;nine embryos were collected from the uterus of two does that conceived.Eight of these were XX embryos,and one was an XY embryo.Conclusions:Our study reveals a novel TLR7/8 signalling mechanism that affects X-sperm motility via the GSK3α/β-hexokinase pathway;this technique could be used to facilitate the efficient production of sexed dairy goat embryos.
基金supported by the National Transgenic Project of China (2016ZX08010001-002)the National Natural Science Foundation of China (81471001)+1 种基金the Inner Mongolia Science and Technology Program, China (201502073)the National 863 Prgram of China (2009AA10Z111)
文摘This study aimed to compare the efficiencies of clustered regulatory interspaced short palindromic repeat(CRISPR)/Cas9-mediated gene knock-ins with zinc finger nucleases(ZFNs) and transcription activator-like effector nucleases(TALENs) in bovine and dairy goat fetal fibroblasts. To test the knock-in efficiency, a set of ZFNs and CRISPR/Cas9 plasmids were designed to edit the bovine myostatin(MSTN) gene at exon 2, while a set of TALENs and CRISPR/Cas9 plasmids were designed for editing the dairy goat β-casein gene at exon 2. Donor plasmids utilizing the ZFNs, TALENs, and CRISPR/Cas9 cutting sites were constructed in theGFP-PGK-Neo R plasmid background, including a 5′ and 3′ homologous arm flanking the genes humanized Fat-1(h Fat-1) or enhanced green fluorescent protein(eGFP). Subsequently, the ZFNs, TALENs, or CRISPR/Cas9 and thehFat-1 or eGFP plasmids were co-transfected by electroporation into bovine and dairy goat fetal fibroblasts. After G418(Geneticin) selection, single cells were obtained by mouth pipetting, flow cytometry or a cell shove. The gene knock-in events were screened by PCR across the homologous arms. The results showed that in bovine fetal fibrobalsts, the efficiencies of ZFNs-mediated eGFP andhFat-1 gene knock-ins were 13.68 and 0%, respectively. The efficiencies of CRISPR/Cas9-mediated eGFP andhFat-1 gene knock-ins were 77.02 and 79.01%, respectively. The eGFP gene knock-in efficiency using CRISPR/Cas9 was about 5.6 times higher than when using the ZFNs gene editing system. Additionally, thehFat-1 gene knock-in was only obtained when using the CRISPR/Cas9 system. The difference of knockin efficiencies between the ZFNs and CRISPR/Cas9 systems were extremely significant(P〈0.01). In the dairy goat fetal fibroblasts, the efficiencies of TALENs-mediated eGFP andhFat-1 gene knock-ins were 32.35 and 26.47%, respectively. Theefficiencies of eGFP and hFat-1 gene knock-ins using CRISPR/Cas9 were 70.37 and 74.29%, respectively. The knock-in efficiencies difference between the TALENs and CRISPR/Cas9 systems were extremely significant(P〈0.01). This study demonstrated that CRISPR/Cas9 was more efficient at gene knock-ins in domesticated animal cells than ZFNs and TALENs. The CRISPR/Cas9 technology offers a new era of precise gene editing in domesticated animal cell lines.
基金supported by the National Natural Science Foundation of China(award number:31902126)the Science&Technological Project of Shaanxi Province,China(award number:2017TSCXL-NY-04-01)。
文摘Background:In recent years,nitrooxy compounds have been identified as promising inhibitors of methanogenesis in ruminants.However,when animals receive a nitrooxy compound,a high portion of the spared hydrogen is eructated as gas,which partly offsets the energy savings of CH4mitigation.The objective of the present study was to evaluate the long-term and combined effects of supplementation with N-[2-(nitrooxy)ethyl]-3-pyridinecarboxamide(NPD),a methanogenesis inhibitor,and fumaric acid(FUM),a hydrogen sink,on enteric CH4production,rumen fermentation,bacterial populations,apparent nutrient digestibility,and lactation performance of dairy goats.Results:Twenty-four primiparous dairy goats were used in a randomized complete block design with a 2×2factorial arrangement of treatments:supplementation without or with FUM(32 g/d)or NPD(0.5 g/d).All samples were collected every 3 weeks during a 12-week feeding experiment.Both FUM and NPD supplementation persistently inhibited CH4yield(L/kg DMI,by 18.8%and 18.1%,respectively)without negative influence on DMI or apparent nutrient digestibility.When supplemented in combination,no additive CH4suppression was observed.FUM showed greater responses in increasing the molar proportion of propionate when supplemented with NPD than supplemented alone(by 10.2%vs.4.4%).The rumen microbiota structure in the animals receiving FUM was different from that of the other animals,particularly changed the structure of phylum Firmicutes.Daily milk production and serum total antioxidant capacity were improved by NPD,but the contents of milk fat and protein were decreased,probably due to the bioactivity of absorbed NPD on body metabolism.Conclusions:Supplementing NPD and FUM in combination is a promising way to persistently inhibit CH4emissions with a higher rumen propionate proportion.However,the side effects of this nitrooxy compound on animals and its residues in animal products need further evaluation before it can be used as an animal feed additive.
基金supported by Innovation Team Project of Northeast Agricultural Vniversity(XLT005-1-2)Research Fund for the Doctoral Program of Heilongjiang Educational Committee(HLJBSDJI2004-15)
文摘Mammary epithelial cells with lactational function can be a valuable cellular model for research of the development and regulation of the mammary gland.This paper describes some aspects of function of an epithelial cell line from the mammary gland of the dairy goat.SDS-PAGE,triglyceride and lactose content of cultured cells were used to assess synthetic function of cells and the effects of exposure to insulin and prolactin.Results show that goat mammary epithelial cells can synthesize fat,proteins and lactose when they were cultured in DMEM-F12 medium with added EGF,IGF-1,ITS and FBS.There were no obvious changes after 48h treatment with additional insulin.Prolactin added to the basal medium significantly increased synthesis of proteins and lactose.A mammary gland epithelial cell line from goats which has lactational function has been established.This outcome provides a valuable and convenient model system.
基金Supported by Grant of Qingdao Agricultural University
文摘The experiment was conducted to determine effects of different dietary cation-anion difference(DCAD) in diets on ruminal fluid pH and fiber degradation in rumen of Laoshan dairy goats. A 4×4 latin square design was adopted. DCAD in different groups was 0, 50, 100, 200 mEq·kg^-1 of DM, respectively. The results of ruminal pH indicated that different DCAD could significantly influence the ruminal pH (P〈0.05) and ruminal fluid pH increased as DCAD increased from 0 to 200 mEq·kg^-1 of DM at different sampling time-points. There was no effect of DCAD on carboxymethyl cellulase in ruminal fluid at 4 h and 8 h postfeeding (P〉0.05). Degradation ofNDF, ADF, CF peaked at a DCAD of 100 mEq·kg^-1 of DM. It could be concluded that DCAD of 100 mEq·kg^-1 of DM was advantage to non-pregnancy, non-lactication Laoshan dairy goat.
基金Supported by the National Basic Research Program of China(973 Program,2011CB100804)the National Natural Science Foundation of China(31101784)Funds for Young Researchers from Northeast Agricultural University(14QC43)
文摘The lactating mammary gland is a prodigious protein-producing factory, but the milk protein synthesis mechanisms are not well understood. The major objective of this paper was to elucidate which genes and pathways were involved in the regulation of milk protein synthesis in the dairy goat mammary gland. Total 36 primiparous Guanzhong dairy goats were allotted in 12 groups according to their mammary development stages: days 90 and 150 of virgin, days 30, 90, and 150 of pregnancy, days 1, 10, 35, and 60 of lactation and days 3, 7, and 21 of involution (three animals per group). Mammary tissue RNA was isolated for quantitative real- time RT-PCR of four casein genes alpha-s 1 casein (CSN 1S 1 ), alpha-s2 casein (CSN 1 S2), beta-casein (CSN2) and casein kappa (CSN3), four whey protein genes lactoglobulin (LGB), laetalbumin (LALBA), laetofarrin (LTF), and Whey acidic protein (WAP) and the genes which were potentially to regulate dairy goat milk protein synthesis at the level of transcription or translation [prolactin receptor (PRLR), AKT1, signal transducers and activators of transcription 5 (STAT5), E74-Like Factor 5 (ELF5), eukaryotic translation initiation factor 4E binding protein 1 (EIF4E-BP1), S6kinase (S6K) and caveolin 1]. The results showed that all genes were up-regulated in lactation period. The expressions of PRLR, AKT1, STAT5, ELF5, and S6K were similar to mRNA expressions of milk proteins. Our results indicated that milk protein synthesis in dairy goat mammary gland was possibly regulated by these genes.
文摘This article explores a technique for measuring the energy (NEL) value of feeds without respiration calorimetry or slaughter. The objectives were to compare results obtained from goats with those from cows, and to describe factors which limited the precision of these NEL estimates. One lactating Alpine doe and one lactateing Holstein cow were assigned to each of six different sequences of three 56-d feeding treatments consisting of low, medium, and high doses of the basal diet, rice bran, or hominy feed. This resulted in 30 observations of the basal diet and 12 of each byproduct feed for each species and utilized a total of 18 cows and 18 does. The NEL values of the basal diet, rice bran, and hominy feed were calculated as the sum of milk energy, change in body energy, and estimated fasting heat production per kilogram of feed dry matter. Milk energy was determined by bomb calorimetry and body energy from live body weight and deuterium oxide space. The NEL (MJ/kg) determined in this manner were basal diet, 5.73 and 5.98;rice bran, 7.11 and 7.07;and hominy feed, 6.99 and 8.20 for cows and goats, respectively.
文摘Lactation curves are a graphical representation of the milk production profile of a doe from parturition to drying up. Their shape provides information about the productivity of the doe and offers a means of explaining features of the milk production patterns of each animal. A total of 2732 daily morning milk records from 610 does of the Kenyan Alpine dairy goats’ genetic groups (50% Alpine, 75% Alpine, 87.5% Alpine and > 87.5% Alpine) and local goats (0% Alpine) kept in small-holder farms were used to evaluate factors affecting milk yield and to examine the characteristics of their lactation curve. A nonlinear mixed model was used to fit the lactation curves to all does simultaneously. The Wood’s (1967) equation was fitted within each genetic group and parity to generate genetic group and parity lactation curves. The mean lactation period was 218 ± 46 days and the model accounted for 88% of the total variation. Significant differences (P 87.5% Alpine genetic groups respectively. Genetic group did not significantly affect rate of increase to peak yield (P > 0.05) and rate of decline from peak (P > 0.05) or persistency (P > 0.05). Parity significantly affected rate of increase to peak, rate of decrease from peak and persistency (P < 0.01). The month of kidding significantly affected the rate of increase to peak (P < 0.05) and persistency, but not rate of decrease from peak. The synchronization of breeding with season has a practical implication for the maximization of lactation yield when considered in combination with other biological and economic constraints. The superior production of the pedigree animals supports the development of composite breed types in Kenya to take advantage of the fitness of indigenous breeds, the productivity of imported dairy breeds, heterosis, and the potential for selection within the composite to improve productivity in later generations.
文摘The experiment was conducted to investigate the effect of transfer of PUFA protected and carnitin precursor on the ration of chemical composition of milk dairy goat. In total, 10 female dairy goats of 2 - 4 years old Peranakan Etawah (PE) with body weight of 25 - 45 kg were used in this experiment. The feed material included a basal diet (control) based on yellow corn, rice bran, soya bean meal, coconut meal, tuna fish oil and lemuru fish oil. The method of the research was experimental in vivo using Randomized Completely Block Design (RCBD). There were 5 treatments in each experiment and 2 replications. The treatment consisted of P0 = control ration, P1 = P0 + 200 ppm L-carnitine on the ration, P2 = P1 + soya bean oil, P3 = P1 + protected tuna fish oil 5 ml or equal with 4% in the ration, and P4 = P1 + protected lemuru fish oil 5 ml or equal with 4% in the ration. The measured variable is chemical composition of milk dairy goat. The results of variance analysis showed that the effect of transfer of PUFA fatty acid in the rations contained 200 ppm L-carnitine significantly
文摘A study was conducted in three cluster regions in Kenya where the Alpine,Toggenburg and Saanen dairy goat breeds,respectively,were kept.The objective was to determine the breeds’relative performance for use as a basis of their recommendation to farmers.Formal questionnaires were used to obtain information on farm sizes,dairy goat sources,reasons for keeping the dairy goats,goat milk production,amount of feed offered to the goats and the constraints faced.Further information on the actual milk production and live weights of the milking does was collected directly from the farms using hired recorders.Results indicated that the dairy goats were fed between 6 kg/goat/day and 17 kg/goat/day of forage.They had a low production average of 1.4 L milk/goat/day with no clear cut breed differences.Toggenburg milking does were significantly(p<0.05)heavier than the other breeds(48.3 vs.38.0 and 39.0 kg for the Alpine and Saanen dairy goats,respectively).The milk production and goat live weights were below their reported potential.Feed shortage in the dry season was a major constraint.It was concluded that farmers could keep any of the three breeds.It was recommended that data on the comparative performance from the three breeds be generated to guide on farmer choices.Governments receiving donor support on agricultural endeavours should put in place the technical and policy mechanisms to support the ventures after the donor exits,and also ensure recommendations by different donors on a technical issue are consistent and complementary.
文摘The goals of this study were to determine the weekly milk production of Saanen goats at UniSZA Pasir Akar Farm,and to evaluate milk production and composition in three age groups.From January 2021 to May 2021,a study was conducted at the UniSZA Pasir Akar Farm in Besut,Terengganu.Ninety goat milk samples were collected and stored in sterile falcon tubes.Milk samples were stored in an insulated box at 5℃ before being transported to the laboratory and stored at-20℃ until further analysis.Milk samples were analyzed in four replicates for each sample group using the Milkotester.The one-way analysis of variance(ANOVA)method was used to analyze raw data among age groups,with p<0.05 indicating a significant difference.The highest milk yield was produced by four-year-old goats(943.9 g/d),followed by three-year-old goats(850.5 g/d)and two-year-old goats(571.1 g/d),respectively.Solid non-fat(SNF),protein,and lactose content showed the highest in percentage in the 3-year old group,at 7.80%,2.80%,and 4.27%,respectively.However,the fat content revealed an unusual pattern,with 2.87%,2.77%,and 3.33%representing 2,3 and 4 years old.This occurred due to other factors such as feed,breed,and age.In conclusion,this study found a significant difference in milk yield and composition across three age groups.However,this is only a preliminary result based on a small number of animals and a short study period.Future studies will perhaps,use larger sample sizes and parameters to validate the current result.
文摘Isabel grape(IG)products have high contents of phenolic compounds and fiber recognized for their positive impacts on microorganisms associated with health benefits to host.This study evaluated the effects of goat yogurts formulated with ingredients from IG integral valorization on the growth and metabolism of different probiotic strains,as well as on the population of selected bacterial groups and metabolic activity of human colonic microbiota in vitro.Goat yogurts with IG ingredients(IGI)stimulated the growth of tested Lactobacillus and Bifidobacterium probiotic strains during a 48-h cultivation,as well as decreased the pH values and enhanced the organic acid production.Goat yogurts with IGI increased the population of Lactobacillus spp.and Bifidobacterium spp.during a 24-h in vitro colonic fermentation.A stable Firmicutes:Bacteroidetes ratio close to 1 was found in media with goat yogurt formulations during the colonic fermentation,being similar to the effect caused by fructooligosaccharides.Goat yogurt formulations with IGI caused increased production of short-chain fatty acids and sugar consumption during colonic fermentation.Goat yogurts with IGI should be a valuable strategy for development of novel added-value foods with beneficial effects on gut microbiota and human health.