The paper presents a study on the effects of low intensity laser irradiation on morphological changes in plants sprouted from maize hybrid seeds (two hybrids) and wheat seeds. Pre-sowing laser irradiation treatment ...The paper presents a study on the effects of low intensity laser irradiation on morphological changes in plants sprouted from maize hybrid seeds (two hybrids) and wheat seeds. Pre-sowing laser irradiation treatment on the seeds was done, intervals from 10 s to 15 min (approximately), by using a diode laser output power of 12 mW at 904 nm wavelength or with He-Ne laser with output power of 50 mW and 632.8 nm wavelength. Before irradiation seeds were divided into groups (wet and dry, and then in subgroups-irradiated or control groups). We used maize hybrids, Amilacea and Identata and wheat (Triticum aestivum). The reflection coefficient in visible range was done for maize varieties. Obtained data show the influence of laser beam to better plant growth. Better results are obtained for dry seed irradiation than for wet. In order to investigate the effect of laser beam and in general to clarify a lot of unsolved photo processes related to bioorganisms at macroscopic and microscopic levels, some optical constants of selected plant families were researched. At the same time, the influence of laser beams of common wavelengths to the selected plants was monitored. Morphological processes of plants (seeds and leaves) irradiated under different conditions and plant growing dynamics were contemplated. The definite correlation analyses of obtained results were made, clearly speaking about the influence of small-dose radiation to characteristics (quantitative and other genetic, bio-stimulating effects) of future plant growth.展开更多
文摘The paper presents a study on the effects of low intensity laser irradiation on morphological changes in plants sprouted from maize hybrid seeds (two hybrids) and wheat seeds. Pre-sowing laser irradiation treatment on the seeds was done, intervals from 10 s to 15 min (approximately), by using a diode laser output power of 12 mW at 904 nm wavelength or with He-Ne laser with output power of 50 mW and 632.8 nm wavelength. Before irradiation seeds were divided into groups (wet and dry, and then in subgroups-irradiated or control groups). We used maize hybrids, Amilacea and Identata and wheat (Triticum aestivum). The reflection coefficient in visible range was done for maize varieties. Obtained data show the influence of laser beam to better plant growth. Better results are obtained for dry seed irradiation than for wet. In order to investigate the effect of laser beam and in general to clarify a lot of unsolved photo processes related to bioorganisms at macroscopic and microscopic levels, some optical constants of selected plant families were researched. At the same time, the influence of laser beams of common wavelengths to the selected plants was monitored. Morphological processes of plants (seeds and leaves) irradiated under different conditions and plant growing dynamics were contemplated. The definite correlation analyses of obtained results were made, clearly speaking about the influence of small-dose radiation to characteristics (quantitative and other genetic, bio-stimulating effects) of future plant growth.