Car-to-pedestrian collision(CPC)accidents occur frequently,and pedestrians often suffer serious head/brain injuries.One major cause is the primary impact with the windshield.Here,we use an umerical sim ulation method ...Car-to-pedestrian collision(CPC)accidents occur frequently,and pedestrians often suffer serious head/brain injuries.One major cause is the primary impact with the windshield.Here,we use an umerical sim ulation method to study the influence of the windshield in-clination angle of a passenger car on pedestrian head/brain injury due to CPC accidents.The range of the windshield inclination angle was set at 24°-50°,with an interval of 2°.The results show that the windshield angle significantly affects the pedestrian kine-matics and exerts different effects on the head injury when evaluating with various head injury criteria.Regarding the head peak linear/rotational acceleration and acceleration-based head injury criterion(HIC)/rotational injury criterion(RIC),the predictions at the secondary impact stage have no clear relationship with the windshield angle(R^(2)=0.04,0.07,0.03 and 0.26,respectively)and their distributions are scattered.In the primary impact,the peak linear acceleration and HIC show a weak trend of first decreasing and then increasing with the increasing of the windshield angle,and the rotational acceleration and RIC tend to remain relatively con-stant.Regarding the cum ulative strain dama ge measure(CSDM)criterion,the predictions at the primary impact are slightly lower than those at the secondary impact,and the trend of first decreasing and then increasing with the increase in the windshield angle is observed at both impact stages.When the windshield inclination angle is approximately 32°-40°,the head injury severity in both impact phases is generally lower than that predicted at other windshield angles.展开更多
Purpose:Head injury criterion(HIC)companied by a rotation-based metric was widely believed to behelpful for head injury prediction in road traffic accidents.Recently,the Euro-New Car AssessmentProgram utilized a newly...Purpose:Head injury criterion(HIC)companied by a rotation-based metric was widely believed to behelpful for head injury prediction in road traffic accidents.Recently,the Euro-New Car AssessmentProgram utilized a newly developed metric called diffuse axonal multi-axis general evaluation(DAMAGE)to explain test device for human occupant restraint(THOR)head injury,which demonstratedexcellent ability in capturing concussions and diffuse axonal injuries.However,there is still a lack ofcomprehensive understanding regarding the effectiveness of using DAMAGE for Hybrid III 50thpercentile male dummy(H50th)head injury assessment.The objective of this study is to determinewhether the DAMAGE could capture the risk of H50th brain injury during small overlap barrier tests.Methods:To achieve this objective,a total of 24 vehicle crash loading curves were collected as input datafor the multi-body simulation.Two commercially available mathematical dynamic models,namelyH50th and THOR,were utilized to investigate the differences in head injury response.Subsequently,adecision method known as simple additive weighting was employed to establish a comprehensive braininjury metric by incorporating the weighted HIC and either DAMAGE or brain injury criterion.Furthermore,35 sets of vehicle crash test data were used to analyze these brain injury metrics.Results:The rotational displacement of the THOR head is significantly greater than that of the H50thhead.The maximum linear and rotational head accelerations experienced by H50th and THOR modelswere(544.6±341.7)m/s^(2),(2468.2±1309.4)rad/s^(2) and(715.2±332.8)m/s^(2),(3778.7±1660.6)rad/s^(2),respectively.Under the same loading condition during small overlap barrier(SOB)tests,THOR exhibits ahigher risk of head injury compared to the H50th model.It was observed that the overall head injuryresponse during the small overlap left test condition is greater than that during the small overlap righttest.Additionally,an equation was formulated to establish the necessary relationship between theDAMAGE values of THOR and H50th.Conclusion:If H50th rather than THOR is employed as an evaluation tool in SOB crash tests,newlydesigned vehicles are more likely to achieve superior performance scores.According to the current injurycurve for DAMAGE and brain injury criterion,it is highly recommended that HIC along with DAMAGE wasprioritized for brain injury assessment in SOB tests.展开更多
基金supported by the National Natural Science Funds for Distinguished Young Sc holar(Gr ant No.52325211)National Natural Science Foundation of China(Grants No.52172399 and 52372348)+1 种基金Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Pro vince,Natural Science Foundation of Changsha(Grant No.KQ2208235)Chongqing Ph.D.‘Through Train’Scientific Research Project(Grant No.s1202100000528).
文摘Car-to-pedestrian collision(CPC)accidents occur frequently,and pedestrians often suffer serious head/brain injuries.One major cause is the primary impact with the windshield.Here,we use an umerical sim ulation method to study the influence of the windshield in-clination angle of a passenger car on pedestrian head/brain injury due to CPC accidents.The range of the windshield inclination angle was set at 24°-50°,with an interval of 2°.The results show that the windshield angle significantly affects the pedestrian kine-matics and exerts different effects on the head injury when evaluating with various head injury criteria.Regarding the head peak linear/rotational acceleration and acceleration-based head injury criterion(HIC)/rotational injury criterion(RIC),the predictions at the secondary impact stage have no clear relationship with the windshield angle(R^(2)=0.04,0.07,0.03 and 0.26,respectively)and their distributions are scattered.In the primary impact,the peak linear acceleration and HIC show a weak trend of first decreasing and then increasing with the increasing of the windshield angle,and the rotational acceleration and RIC tend to remain relatively con-stant.Regarding the cum ulative strain dama ge measure(CSDM)criterion,the predictions at the primary impact are slightly lower than those at the secondary impact,and the trend of first decreasing and then increasing with the increase in the windshield angle is observed at both impact stages.When the windshield inclination angle is approximately 32°-40°,the head injury severity in both impact phases is generally lower than that predicted at other windshield angles.
基金This work has been supported by the National Natural ScienceFoundation of China(Grant No.32171305)Natural Science Foundation of Chongqing,China(Grant No.cstc2021jcyj-msxmX0109)Chongqing Technology Innovation and Application Development Project(Grant No.CSTB2023YSZX-JSX0003).
文摘Purpose:Head injury criterion(HIC)companied by a rotation-based metric was widely believed to behelpful for head injury prediction in road traffic accidents.Recently,the Euro-New Car AssessmentProgram utilized a newly developed metric called diffuse axonal multi-axis general evaluation(DAMAGE)to explain test device for human occupant restraint(THOR)head injury,which demonstratedexcellent ability in capturing concussions and diffuse axonal injuries.However,there is still a lack ofcomprehensive understanding regarding the effectiveness of using DAMAGE for Hybrid III 50thpercentile male dummy(H50th)head injury assessment.The objective of this study is to determinewhether the DAMAGE could capture the risk of H50th brain injury during small overlap barrier tests.Methods:To achieve this objective,a total of 24 vehicle crash loading curves were collected as input datafor the multi-body simulation.Two commercially available mathematical dynamic models,namelyH50th and THOR,were utilized to investigate the differences in head injury response.Subsequently,adecision method known as simple additive weighting was employed to establish a comprehensive braininjury metric by incorporating the weighted HIC and either DAMAGE or brain injury criterion.Furthermore,35 sets of vehicle crash test data were used to analyze these brain injury metrics.Results:The rotational displacement of the THOR head is significantly greater than that of the H50thhead.The maximum linear and rotational head accelerations experienced by H50th and THOR modelswere(544.6±341.7)m/s^(2),(2468.2±1309.4)rad/s^(2) and(715.2±332.8)m/s^(2),(3778.7±1660.6)rad/s^(2),respectively.Under the same loading condition during small overlap barrier(SOB)tests,THOR exhibits ahigher risk of head injury compared to the H50th model.It was observed that the overall head injuryresponse during the small overlap left test condition is greater than that during the small overlap righttest.Additionally,an equation was formulated to establish the necessary relationship between theDAMAGE values of THOR and H50th.Conclusion:If H50th rather than THOR is employed as an evaluation tool in SOB crash tests,newlydesigned vehicles are more likely to achieve superior performance scores.According to the current injurycurve for DAMAGE and brain injury criterion,it is highly recommended that HIC along with DAMAGE wasprioritized for brain injury assessment in SOB tests.