Driving a vehicle is one of the most common daily yet hazardous tasks. One of the great interests in recent research is to characterize a driver’s behaviors through the use of a driving simulation. Virtual reality te...Driving a vehicle is one of the most common daily yet hazardous tasks. One of the great interests in recent research is to characterize a driver’s behaviors through the use of a driving simulation. Virtual reality technology is now a promising alternative to the conventional driving simulations since it provides a more simple, secure and user-friendly environment for data collection. The driving simulator was used to assist novice drivers in learning how to drive in a very calm environment since the driving is not taking place on an actual road. This paper provides new insights regarding a driver’s behavior, techniques and adaptability within a driving simulation using virtual reality technology. The theoretical framework of this driving simulation has been designed using the Unity3D game engine (5.4.0f3 version) and programmed by the C# programming language. To make the driving simulation environment more realistic, the HTC Vive Virtual reality headset, powered by Steamvr, was used. 10 volunteers ranging from ages 19 - 37 participated in the virtual reality driving experiment. Matlab R2016b was used to analyze the data obtained from experiment. This research results are crucial for training drivers and obtaining insight on a driver’s behavior and characteristics. We have gathered diverse results for 10 drivers with different characteristics to be discussed in this study. Driving simulations are not easy to use for some users due to motion sickness, difficulties in adopting to a virtual environment. Furthermore, results of this study clearly show the performance of drivers is closely associated with individual’s behavior and adaptability to the driving simulator. Based on our findings, it can be said that with a VR-HMD (Virtual Reality-Head Mounted Display) Driving Simulator enables us to evaluate a driver’s “performance error”, “recognition errors” and “decision error”. All of which will allow researchers and further studies to potentially establish a method to increase driver safety or alleviate “driving errors”.展开更多
The head mounted display (HMD) is widely used in virtual reality technology. In common HMD, however, the binocular disparity is set to an equal fixed value in the entire range of view. Such HMD systems have several ...The head mounted display (HMD) is widely used in virtual reality technology. In common HMD, however, the binocular disparity is set to an equal fixed value in the entire range of view. Such HMD systems have several shortcomings when used for wide views. In this study, in order to realize a natural stereo sensation of HMD with wide view, we measure the characteristics of binocular stereo perception and binocular light perception. Results show that both the stereoacuity and light sensitivity decrease as the retina's eccentricity increases from fovea to periphery. However, the decrease of the stereoacuity is more rapid than that of the light sensitivity. These results suggest that the binocular disparity at the peripheral field should be small, otherwise double images would be observed instead of a stereo view. Based on the results we develop a relative binocular stereoacuity model which can be applied for the design of HMD systems with wide view.展开更多
Background Virtual Reality(VR)technologies have advanced fast and have been applied to a wide spectrum of sectors in the past few years.VR can provide an immersive experience to users by generating virtual images and ...Background Virtual Reality(VR)technologies have advanced fast and have been applied to a wide spectrum of sectors in the past few years.VR can provide an immersive experience to users by generating virtual images and displaying the virtual images to the user with a head-mounted display(HMD)which is a primary component of VR.Normally,an HMD contains a list of hardware components,e.g.,housing pack,micro LCD display,microcontroller,optical lens,etc.Settings of VR HMD to accommodate the user's inter-pupil distance(IPD)and the user's eye focus power are important for the user's experience with VR.Methods Although various methods have been developed towards IPD and focus adjustments for VR HMD,the increased cost and complexity impede the possibility for users who wish to assemble their own VR HMD for various purposes,e.g.,DIY teaching,etc.In our paper,we present a novel design towards building a customizable and adjustable HMD for VR in a cost-effective manner.Modular design methodology is adopted,and the VR HMD can be easily printed with 3D printers.The design also features adjustable IPD and variable distance between the optical lens and the display.It can help to mitigate the vergence and accommodation conflict issue.Results A prototype of the customizable and adjustable VR HMD has been successfully built up with off-the-shelf components.A VR software program running on Raspberry Pi board has been developed and can be utilized to show the VR effects.A user study with 20 participants is conducted with positive feedback on our novel design.Conclusions Modular design can be successfully applied for building up VR HMD with 3D printing.It helps to promote the wide application of VR at affordable costs while featuring flexibility and adjustability.展开更多
A new type of light fiehl display is proposed using a head-mounted display (HMD) and a micro structure array (MSA, lens array or pinhole array). Each rendering point emits abundant rays from different directions i...A new type of light fiehl display is proposed using a head-mounted display (HMD) and a micro structure array (MSA, lens array or pinhole array). Each rendering point emits abundant rays from different directions into the viewer's pupil, and at one time the dense light field is generated inside the exit pupil of the HMD through the eyepiece. Therefore, the proposed method not only solves the problem of accommodation and convergence conflict in a traditional HMD, but also drastically reduces the huge data in real three-dimensional (3D) display. To demonstrate the proposed method, a prototype is developed, which is capable of giving the observer a real perception of depth.展开更多
In order to develop the core chip supporting binocular stereo displays for head mounted display (HMD) and glasses-TV, a very large scale integrated (VISI) design scheme is proposed by using a pipeline architecture...In order to develop the core chip supporting binocular stereo displays for head mounted display (HMD) and glasses-TV, a very large scale integrated (VISI) design scheme is proposed by using a pipeline architecture for 3D display processing chip (HMD100). Some key techniques including stereo display processing and high precision video scaling based bicubic interpolation, and their hardware implementations which improve the image quality are presented. The proposed HMD100 chip is verified by the field-programmable gate array (FPGA). As one of innovative and high integration SoC chips, HMD100 is designed by a digital and analog mixed circuit. It can support binocular stereo display, has better scaling effect and integration. Hence it is applicable in virtual reality (VR), 3D games and other microdisplay domains.展开更多
In this paper, a mobile assistance-system is described which supports users in performing manual working tasks in the context of assembling complex products. The assistance system contains a head-worn display for the ...In this paper, a mobile assistance-system is described which supports users in performing manual working tasks in the context of assembling complex products. The assistance system contains a head-worn display for the visualization of information relevant for the workflow as well as a video camera to acquire the scene. This paper is focused on the interaction of the user with this system and describes work in progress and initial results from an industrial application scenario. We present image-based methods for robust recognition of static and dynamic hand gestures in realtime. These methods are used for an intuitive interaction with the assistance-system. The segmentation of the hand based on color information builds the basis of feature extraction for static and dynamic gestures. For the static gestures, the activation of particular sensitive regions in the camera image by the user’s hand is used for interaction. An HMM classifier is used to extract dynamic gestures depending on motion parameters determined based on the optical flow in the camera image.展开更多
文摘Driving a vehicle is one of the most common daily yet hazardous tasks. One of the great interests in recent research is to characterize a driver’s behaviors through the use of a driving simulation. Virtual reality technology is now a promising alternative to the conventional driving simulations since it provides a more simple, secure and user-friendly environment for data collection. The driving simulator was used to assist novice drivers in learning how to drive in a very calm environment since the driving is not taking place on an actual road. This paper provides new insights regarding a driver’s behavior, techniques and adaptability within a driving simulation using virtual reality technology. The theoretical framework of this driving simulation has been designed using the Unity3D game engine (5.4.0f3 version) and programmed by the C# programming language. To make the driving simulation environment more realistic, the HTC Vive Virtual reality headset, powered by Steamvr, was used. 10 volunteers ranging from ages 19 - 37 participated in the virtual reality driving experiment. Matlab R2016b was used to analyze the data obtained from experiment. This research results are crucial for training drivers and obtaining insight on a driver’s behavior and characteristics. We have gathered diverse results for 10 drivers with different characteristics to be discussed in this study. Driving simulations are not easy to use for some users due to motion sickness, difficulties in adopting to a virtual environment. Furthermore, results of this study clearly show the performance of drivers is closely associated with individual’s behavior and adaptability to the driving simulator. Based on our findings, it can be said that with a VR-HMD (Virtual Reality-Head Mounted Display) Driving Simulator enables us to evaluate a driver’s “performance error”, “recognition errors” and “decision error”. All of which will allow researchers and further studies to potentially establish a method to increase driver safety or alleviate “driving errors”.
文摘The head mounted display (HMD) is widely used in virtual reality technology. In common HMD, however, the binocular disparity is set to an equal fixed value in the entire range of view. Such HMD systems have several shortcomings when used for wide views. In this study, in order to realize a natural stereo sensation of HMD with wide view, we measure the characteristics of binocular stereo perception and binocular light perception. Results show that both the stereoacuity and light sensitivity decrease as the retina's eccentricity increases from fovea to periphery. However, the decrease of the stereoacuity is more rapid than that of the light sensitivity. These results suggest that the binocular disparity at the peripheral field should be small, otherwise double images would be observed instead of a stereo view. Based on the results we develop a relative binocular stereoacuity model which can be applied for the design of HMD systems with wide view.
基金Supported by the Computing Science Program jointly offered by Singapore Institute of Technology and University of Glasgow.
文摘Background Virtual Reality(VR)technologies have advanced fast and have been applied to a wide spectrum of sectors in the past few years.VR can provide an immersive experience to users by generating virtual images and displaying the virtual images to the user with a head-mounted display(HMD)which is a primary component of VR.Normally,an HMD contains a list of hardware components,e.g.,housing pack,micro LCD display,microcontroller,optical lens,etc.Settings of VR HMD to accommodate the user's inter-pupil distance(IPD)and the user's eye focus power are important for the user's experience with VR.Methods Although various methods have been developed towards IPD and focus adjustments for VR HMD,the increased cost and complexity impede the possibility for users who wish to assemble their own VR HMD for various purposes,e.g.,DIY teaching,etc.In our paper,we present a novel design towards building a customizable and adjustable HMD for VR in a cost-effective manner.Modular design methodology is adopted,and the VR HMD can be easily printed with 3D printers.The design also features adjustable IPD and variable distance between the optical lens and the display.It can help to mitigate the vergence and accommodation conflict issue.Results A prototype of the customizable and adjustable VR HMD has been successfully built up with off-the-shelf components.A VR software program running on Raspberry Pi board has been developed and can be utilized to show the VR effects.A user study with 20 participants is conducted with positive feedback on our novel design.Conclusions Modular design can be successfully applied for building up VR HMD with 3D printing.It helps to promote the wide application of VR at affordable costs while featuring flexibility and adjustability.
基金partially supported by the National Basic Research Program of China(No.2013CB328805)the National Science Foundation of China(NSFC,No.61205024,61178038)the National Key Technology R&D Program(No.2012BAH64F03)
文摘A new type of light fiehl display is proposed using a head-mounted display (HMD) and a micro structure array (MSA, lens array or pinhole array). Each rendering point emits abundant rays from different directions into the viewer's pupil, and at one time the dense light field is generated inside the exit pupil of the HMD through the eyepiece. Therefore, the proposed method not only solves the problem of accommodation and convergence conflict in a traditional HMD, but also drastically reduces the huge data in real three-dimensional (3D) display. To demonstrate the proposed method, a prototype is developed, which is capable of giving the observer a real perception of depth.
文摘In order to develop the core chip supporting binocular stereo displays for head mounted display (HMD) and glasses-TV, a very large scale integrated (VISI) design scheme is proposed by using a pipeline architecture for 3D display processing chip (HMD100). Some key techniques including stereo display processing and high precision video scaling based bicubic interpolation, and their hardware implementations which improve the image quality are presented. The proposed HMD100 chip is verified by the field-programmable gate array (FPGA). As one of innovative and high integration SoC chips, HMD100 is designed by a digital and analog mixed circuit. It can support binocular stereo display, has better scaling effect and integration. Hence it is applicable in virtual reality (VR), 3D games and other microdisplay domains.
文摘In this paper, a mobile assistance-system is described which supports users in performing manual working tasks in the context of assembling complex products. The assistance system contains a head-worn display for the visualization of information relevant for the workflow as well as a video camera to acquire the scene. This paper is focused on the interaction of the user with this system and describes work in progress and initial results from an industrial application scenario. We present image-based methods for robust recognition of static and dynamic hand gestures in realtime. These methods are used for an intuitive interaction with the assistance-system. The segmentation of the hand based on color information builds the basis of feature extraction for static and dynamic gestures. For the static gestures, the activation of particular sensitive regions in the camera image by the user’s hand is used for interaction. An HMM classifier is used to extract dynamic gestures depending on motion parameters determined based on the optical flow in the camera image.