Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction acc...Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods.展开更多
As an important part of future 5G wireless networks,a vehicular network demands safety,reliability and connectivity.In this context,networking survivability is usually considered an important metric to evaluate networ...As an important part of future 5G wireless networks,a vehicular network demands safety,reliability and connectivity.In this context,networking survivability is usually considered an important metric to evaluate network performance.In this paper,we propose a survivability model for vehicle communication networking based on dual cluster heads,wherein a backup cluster head(CH)will be activated if the primary CH fails,thereby effectively enhancing the network lifetime.Additionally,we introduce a software rejuvenation strategy for the prime CH to further improve the survivability of the entire network.Using the Probabilistic Symbolic Model Checker(PRISM),we verify and discuss the proposed survivability model via numerical simulations.The results show that network survivability can be effectively improved by introducing an additional CH and further enhanced by adopting the software rejuvenation technique.展开更多
One of the major constraints of wireless sensor networks is limited energy available to sensor nodes because of the small size of the batteries they use as source of power. Clustering is one of the routing techniques ...One of the major constraints of wireless sensor networks is limited energy available to sensor nodes because of the small size of the batteries they use as source of power. Clustering is one of the routing techniques that have been using to minimize sensor nodes’ energy consumption during operation. In this paper, A Novel Clustering Algorithm for Energy Efficiency in Wireless Sensor Networks (ANCAEE) has been proposed. The algorithm achieves good performance in terms of minimizing energy consumption during data transmission and energy consumptions are distributed uniformly among all nodes. ANCAEE uses a new method of clusters formation and election of cluster heads. The algorithm ensures that a node transmits its data to the cluster head with a single hop transmission and cluster heads forward their data to the base station with multi-hop transmissions. Simulation results show that our approach consumes less energy and effectively extends network utilization.展开更多
In order to approach to head related transfer functions (HRTFs), this paper employs and compares three kinds of one input neural network models, namely, multi layer perceptron (MLP) networks, radial basis function ...In order to approach to head related transfer functions (HRTFs), this paper employs and compares three kinds of one input neural network models, namely, multi layer perceptron (MLP) networks, radial basis function (RBF) networks and wavelet neural networks (WNN) so as to select the best network model for further HRTFs approximation. Experimental results demonstrate that wavelet neural networks are more efficient and useful.展开更多
Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime,...Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime, so as to prolong the lifetime of the whole WSN. In this paper, we propose a path-based data aggregation scheme (PBDAS) for grid-based wireless sensor networks. In order to extend the lifetime of a WSN, we construct a grid infrastructure by partitioning the whole sensor field into a grid of cells. Each cell has a head responsible for aggregating its own data with the data sensed by the others in the same cell and then transmitting out. In order to efficiently and rapidly transmit the data to the base station (BS), we link each cell head to form a chain. Each cell head on the chain takes turn becoming the chain leader responsible for transmitting data to the BS. Aggregated data moves from head to head along the chain, and finally the chain leader transmits to the BS. In PBDAS, only the cell heads need to transmit data toward the BS. Therefore, the data transmissions to the BS substantially decrease. Besides, the cell heads and chain leader are designated in turn according to the energy level so that the energy depletion of nodes is evenly distributed. Simulation results show that the proposed PBDAS extends the lifetime of sensor nodes, so as to make the lifetime of the whole network longer.展开更多
In recent years, the demand for Wireless Sensor Network (WSN) in smart farming has had a tremendous increase in demand for its efficiency. Wireless sensor networks have very many nodes, and it is of no use when the ba...In recent years, the demand for Wireless Sensor Network (WSN) in smart farming has had a tremendous increase in demand for its efficiency. Wireless sensor networks have very many nodes, and it is of no use when the battery dies. This is why there are several routing protocols being take into consideration to cub this problem. In this paper, in order to increase the heterogeneity and energy levels of the network, the M-LEACH protocol is proposed. The key aim of the Leach protocol is to prolong the existence of wireless sensor network by lowering the energy consumption needed for Cluster Head creation and maintenance, the proposed algorithm instructs a node to use high power amplification as it acts as the Cluster heads, and low power amplification when it becomes a Cluster Member, in the next stage. Finally, for better effectiveness, M-LEACH employs hard and soft threshold systems. Since it eliminates collisions and reduces the packet drop ratio for other signals, the M-LEACH protocol proposed works better than the Leach protocol.展开更多
Cluster-based architectures are one of the most practical solutions in order to cope with the requirements of large-scale wireless sensor networks (WSN). Cluster-head election problem is one of the basic QoS requireme...Cluster-based architectures are one of the most practical solutions in order to cope with the requirements of large-scale wireless sensor networks (WSN). Cluster-head election problem is one of the basic QoS requirements of WSNs, yet this problem has not been sufficiently explored in the context of cluster-based sensor networks. Specifically, it is not known how to select the best candidates for the cluster head roles. In this paper, we investigate the cluster head election problem, specifically concentrating on applications where the energy of full network is the main requirement, and we propose a new approach to exploit efficiently the network energy, by reducing the energy consumed for cluster forming.展开更多
文摘Accurate traffic prediction is crucial for an intelligent traffic system (ITS). However, the excessive non-linearity and complexity of the spatial-temporal correlation in traffic flow severely limit the prediction accuracy of most existing models, which simply stack temporal and spatial modules and fail to capture spatial-temporal features effectively. To improve the prediction accuracy, a multi-head attention spatial-temporal graph neural network (MSTNet) is proposed in this paper. First, the traffic data is decomposed into unique time spans that conform to positive rules, and valuable traffic node attributes are mined through an adaptive graph structure. Second, time and spatial features are captured using a multi-head attention spatial-temporal module. Finally, a multi-step prediction module is used to achieve future traffic condition prediction. Numerical experiments were conducted on an open-source dataset, and the results demonstrate that MSTNet performs well in spatial-temporal feature extraction and achieves more positive forecasting results than the baseline methods.
基金supported by the National Natural Science Foundation of China (No. 61971245 and 61801249 )Nantong University-Nantong Joint Research Center for Intelligent Information Technology (No. KFKT2016A01)
文摘As an important part of future 5G wireless networks,a vehicular network demands safety,reliability and connectivity.In this context,networking survivability is usually considered an important metric to evaluate network performance.In this paper,we propose a survivability model for vehicle communication networking based on dual cluster heads,wherein a backup cluster head(CH)will be activated if the primary CH fails,thereby effectively enhancing the network lifetime.Additionally,we introduce a software rejuvenation strategy for the prime CH to further improve the survivability of the entire network.Using the Probabilistic Symbolic Model Checker(PRISM),we verify and discuss the proposed survivability model via numerical simulations.The results show that network survivability can be effectively improved by introducing an additional CH and further enhanced by adopting the software rejuvenation technique.
文摘One of the major constraints of wireless sensor networks is limited energy available to sensor nodes because of the small size of the batteries they use as source of power. Clustering is one of the routing techniques that have been using to minimize sensor nodes’ energy consumption during operation. In this paper, A Novel Clustering Algorithm for Energy Efficiency in Wireless Sensor Networks (ANCAEE) has been proposed. The algorithm achieves good performance in terms of minimizing energy consumption during data transmission and energy consumptions are distributed uniformly among all nodes. ANCAEE uses a new method of clusters formation and election of cluster heads. The algorithm ensures that a node transmits its data to the cluster head with a single hop transmission and cluster heads forward their data to the base station with multi-hop transmissions. Simulation results show that our approach consumes less energy and effectively extends network utilization.
文摘In order to approach to head related transfer functions (HRTFs), this paper employs and compares three kinds of one input neural network models, namely, multi layer perceptron (MLP) networks, radial basis function (RBF) networks and wavelet neural networks (WNN) so as to select the best network model for further HRTFs approximation. Experimental results demonstrate that wavelet neural networks are more efficient and useful.
基金supported by the NSC under Grant No.NSC-101-2221-E-239-032 and NSC-102-2221-E-239-020
文摘Sensor nodes in a wireless sensor network (WSN) are typically powered by batteries, thus the energy is constrained. It is our design goal to efficiently utilize the energy of each sensor node to extend its lifetime, so as to prolong the lifetime of the whole WSN. In this paper, we propose a path-based data aggregation scheme (PBDAS) for grid-based wireless sensor networks. In order to extend the lifetime of a WSN, we construct a grid infrastructure by partitioning the whole sensor field into a grid of cells. Each cell has a head responsible for aggregating its own data with the data sensed by the others in the same cell and then transmitting out. In order to efficiently and rapidly transmit the data to the base station (BS), we link each cell head to form a chain. Each cell head on the chain takes turn becoming the chain leader responsible for transmitting data to the BS. Aggregated data moves from head to head along the chain, and finally the chain leader transmits to the BS. In PBDAS, only the cell heads need to transmit data toward the BS. Therefore, the data transmissions to the BS substantially decrease. Besides, the cell heads and chain leader are designated in turn according to the energy level so that the energy depletion of nodes is evenly distributed. Simulation results show that the proposed PBDAS extends the lifetime of sensor nodes, so as to make the lifetime of the whole network longer.
文摘In recent years, the demand for Wireless Sensor Network (WSN) in smart farming has had a tremendous increase in demand for its efficiency. Wireless sensor networks have very many nodes, and it is of no use when the battery dies. This is why there are several routing protocols being take into consideration to cub this problem. In this paper, in order to increase the heterogeneity and energy levels of the network, the M-LEACH protocol is proposed. The key aim of the Leach protocol is to prolong the existence of wireless sensor network by lowering the energy consumption needed for Cluster Head creation and maintenance, the proposed algorithm instructs a node to use high power amplification as it acts as the Cluster heads, and low power amplification when it becomes a Cluster Member, in the next stage. Finally, for better effectiveness, M-LEACH employs hard and soft threshold systems. Since it eliminates collisions and reduces the packet drop ratio for other signals, the M-LEACH protocol proposed works better than the Leach protocol.
文摘Cluster-based architectures are one of the most practical solutions in order to cope with the requirements of large-scale wireless sensor networks (WSN). Cluster-head election problem is one of the basic QoS requirements of WSNs, yet this problem has not been sufficiently explored in the context of cluster-based sensor networks. Specifically, it is not known how to select the best candidates for the cluster head roles. In this paper, we investigate the cluster head election problem, specifically concentrating on applications where the energy of full network is the main requirement, and we propose a new approach to exploit efficiently the network energy, by reducing the energy consumed for cluster forming.