The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the buildi...The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the building to collapse.Many small changes caused the tower’s collapse,but the early staff often could not intuitively notice the changes in the tower’s state.In the current tower online monitoring system,terminal equipment often needs to replace batteries frequently due to premature exhaustion of power.According to the need for real-time measurement of power line tower,this research designed a real-time monitoring device monitoring the transmission tower attitude tilting and foundation state based on the inertial sensor,the acceleration of 3 axis inertial sensor and angular velocity raw data to pole average filtering pre-processing,and then through the complementary filtering algorithm for comprehensive calculation of tilt angle,the system meets the demand for inclined online monitoring of power line poles and towers regarding measurement accuracy,with low cost and power consumption.The optimization multi-sensor cooperative detection and correction measured tilt angle result relative accuracy can reach 1.03%,which has specific promotion and application value since the system has the advantages of unattended and efficient calculation.展开更多
Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with th...Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with the isotropic background,while the explicit model for the cracked rock with the anisotropic background is rarely investigated in spite of such case being often encountered in the earth.Hence,we first studied dependences of the crack opening displacement tensors on the crack dip angle in the coordinate systems formed by symmetry planes of the crack and the background anisotropy,respectively,by forty groups of numerical experiments.Based on the conclusion from the experiments,the analytical solution was derived for the effective elastic properties of the rock with the inclined penny-shaped cracks in the transversely isotropic background.Further,we comprehensively analyzed,according to the developed model,effects of the crack dip angle,background anisotropy,filling fluid and crack density on the effective elastic properties of the cracked rock.The analysis results indicate that the dip angle and background anisotropy can significantly either enhance or weaken the anisotropy degrees of the P-and SH-wave velocities,whereas they have relatively small effects on the SV-wave velocity anisotropy.Moreover,the filling fluid can increase the stiffness coefficients related to the compressional modulus by reducing crack compliance parameters,while its effects on shear coefficients depend on the crack dip angle.The increasing crack density reduces velocities of the dry rock,and decreasing rates of the velocities are affected by the crack dip angle.By comparing with exact numerical results and experimental data,it was demonstrated that the proposed model can achieve high-precision estimations of stiffness coefficients.Moreover,the assumption of the weakly anisotropic background results in the consistency between the proposed model and Hudson's published theory for the orthorhombic rock.展开更多
For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of...For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft.展开更多
The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy avai...The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy availability varies, this criterion may not be optimal. This study explores two alternative optimization criteria focused on maximizing baseload supply potential and minimizing required storage capacity to address seasonality in energy generation. The optimal tilt angles determined for these criteria differed significantly from the standard approach. This research highlights additional factors crucial for designing solar power systems beyond gross energy generation, essential for the global transition towards a fully renewable energy-based electric grid in the future.展开更多
A module pair (C, T) over an Artin algebra A is called a tilting pair if both C and T are selforthogonal modules and the conditions T e ada C and C ∈ add T hold. The duality on a tilting pair is investigated to dis...A module pair (C, T) over an Artin algebra A is called a tilting pair if both C and T are selforthogonal modules and the conditions T e ada C and C ∈ add T hold. The duality on a tilting pair is investigated to discuss the condition under which the dual of a tilting pair is also a tilting pair. A necessary and sufficient condition of (D(7), D(C) ) being an n-tilting pair over an Artin algebra for an n-tilting pair ( C, 7) is given. And, a necessary and sufficient condition of ( T^*, C^* ) being an ntilting pair over a selfinjective Artin algebra for an n-tilting pair (C, 7) is also given.展开更多
AIM:To evaluate the ocular outcomes and to elucidate possible mechanisms underlying intraocular pressure(IOP)change following the head-down tilt(HDT)test.METHODS:The study included 21 participants at the Department of...AIM:To evaluate the ocular outcomes and to elucidate possible mechanisms underlying intraocular pressure(IOP)change following the head-down tilt(HDT)test.METHODS:The study included 21 participants at the Department of Ophthalmology of Tongji Hospital.Subjects received the test of I-care tonometry,enhanced depth imaging optical coherence tomography and heart rate variability(HRV)analysis before and after 15 min HDT test.The lumen area of Schlemm’s canal(SCAR),IOP,HRV were calculated.RESULTS:IOP increased significantly after 20°head down position from 14.0±3.0 to 17.0±3.3 mm Hg(P<0.001).SCAR decreased from 13449.0±5454.9μm^(2) at sitting condition to 9576.6±4130.9μm^(2) post 15 min HDT test.High frequency(HF)indices increased significantly from 1462±865 Hz at baseline to 2128±824 Hz.Heart rate(HR)decreased significantly from 76±11.48 to 70±11.52 bpm after the HDT.The linear regression analysis showed that the difference of HF and SCAR significantly correlated with each other during the HDT(R^(2)=20%,P=0.04).CONCLUSION:These outcomes perform the first evidence of the activation of autonomic nervous system of HDT may cause the collapse of Schlemm’s canal lumen,which in turn leading to the increased IOP.展开更多
Off line programming provides an essential link between CAD and CAM, whose development will result in greater use of robotic arc welding. An arc welding system with a robot and a rotating/tilting positioner is one of...Off line programming provides an essential link between CAD and CAM, whose development will result in greater use of robotic arc welding. An arc welding system with a robot and a rotating/tilting positioner is one of the most typical workcells. The inverse kinematics of robot and positioner is the foundation of the off line programming system. The previous researchers only focused on a special solution of the positioner inverse kinematics, which is the solution at down hand welding position. In this paper, we introduce a method for representing welding position. Then a general algorithm of rotating/tilting positioner inverse kinematics is presented, and an approach to find the unique solution of the inverse kinematics is discussed. The simulation experiment results show that the general algorithm can improve the ability of robotic arc welding off line programming system to program all types of welding positions.展开更多
The development of the tilting train can contribute to solve the economic burden and enhance the transportation means of areas that did not share the benefits of the high speed railway. But the dynamic behavior caused...The development of the tilting train can contribute to solve the economic burden and enhance the transportation means of areas that did not share the benefits of the high speed railway. But the dynamic behavior caused by the interaction between the train and the track as well as the environmental vibrations along the railway should be evaluated to secure the safety of the train and riding comfort. In this paper a study on the characteristics for ground vibration due to the tilting train travelling in the conventional line are carried out. The transmitted load into the ground is computed through a study on the interrelation between the tilting car and the line. This load is applied into the numerical model which is one for the analysis of ground vibration due to the travelling tilting car. The far fields on the numerical model are formed by the absorbing boundary using dashpot, one of the most widely used absorbing boundary in finite element analysis. Using this numerical model, the analysis of the ground vibration characteristics caused by travelling tilting car is performed. From the analysis, it is shown that the transferred load due to the tilting train is larger than that of the conventional train.展开更多
The recent research on stability of gas bearing-rotor systems still mostly adopts the same method as in oil-lubricated bearing-rotor systems.The dynamic coefficients of gas bearings in the case that the perturbation f...The recent research on stability of gas bearing-rotor systems still mostly adopts the same method as in oil-lubricated bearing-rotor systems.The dynamic coefficients of gas bearings in the case that the perturbation frequencies are same as the rotating speed are used to carry out the stability analysis of rotor systems.This method does not contact the frequency characteristics of dynamic stiffness and damping coefficients of gas bearings with the dynamical behaviors of rotor systems.Furthermore,the effects of perturbation frequencies on the stability of systems are not taken into account.In this paper,the dynamic stiffness and damping coefficients of tilting-pad gas bearings are calculated by the partial derivative method.On the base of solution of dynamic coefficients,two computational models are produced for stability analysis on rotor systems supported by tilting-pad gas bearings according to whether the degrees of the freedom of pads tilting motions are included in the equations of motion or not.In the condition of considering the frequency effects of dynamic coefficients of tilting-pad gas bearings,the corresponding eigenvalues of the rigid and first five vibration modes of the system with the working speeds of 8-30 kr/min are computed through iteratively solving the equations of motion of rotor-system by using two computational models,respectively.According to the obtained eigenvalues,the stability of rotor system is analyzed.The results indicate that the eigenvalues and the stability of rotor system obtained by these two computational models are well agreement each other.They all can more accurately analyze the stability of rotor systems supported by tilting-pad gas bearings.This research has important meaning for perfecting the stability analysis method of rotor systems supported by gas bearings.展开更多
By using tilting carbodies, train can negotiate at a higher speed withoutreducing the passenger's ride quality. This is a good method to allow a significant increase inspeed at existing track to improve the railwa...By using tilting carbodies, train can negotiate at a higher speed withoutreducing the passenger's ride quality. This is a good method to allow a significant increase inspeed at existing track to improve the railway transportation capability, and to enhance thecompetition ability of railways with other transportation systems. With the increase of the curvenegotiation speed, the wheel-rail lateral forces and wheel-rail wear of the tilting train willincrease. The self-steering radial bogie is an effective way to solve the problem. The dynamic modelof the tilting passenger car with self-steering bogies is established in detail, and the curvingperformance of the car is investigated.展开更多
By direct calculation of rotation matrices of SO(3),we show how certain specific sequence of eight consecutiverotations of digital angles can yield a tilting of a facet mirror.We also design a detailed program specifi...By direct calculation of rotation matrices of SO(3),we show how certain specific sequence of eight consecutiverotations of digital angles can yield a tilting of a facet mirror.We also design a detailed program specifically to tiltan array of mirrors from planar orientation to the required focusing orientation.We describe how to use the 8-step torealize the focusing of the mirror array.We have found,in our designed program,an important feature of row-sharingduring the rotations for the columns and similarly the column-sharing during the rotations for the row.This feature cansave a lot of operating time during the actual realization of the mechanical movements.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.62172242,51901152)Industry University Cooperation Education Program of the Ministry of Education(No.2020021680113)Shanxi Scholarship Council of China.
文摘The transmission line tower will be affected by bad weather and artificial subsidence caused by the foundation and other factors in the power transmission.The tower’s tilt and severe deformation will cause the building to collapse.Many small changes caused the tower’s collapse,but the early staff often could not intuitively notice the changes in the tower’s state.In the current tower online monitoring system,terminal equipment often needs to replace batteries frequently due to premature exhaustion of power.According to the need for real-time measurement of power line tower,this research designed a real-time monitoring device monitoring the transmission tower attitude tilting and foundation state based on the inertial sensor,the acceleration of 3 axis inertial sensor and angular velocity raw data to pole average filtering pre-processing,and then through the complementary filtering algorithm for comprehensive calculation of tilt angle,the system meets the demand for inclined online monitoring of power line poles and towers regarding measurement accuracy,with low cost and power consumption.The optimization multi-sensor cooperative detection and correction measured tilt angle result relative accuracy can reach 1.03%,which has specific promotion and application value since the system has the advantages of unattended and efficient calculation.
基金We would like to acknowledge all the reviewers and editors and the sponsorship of National Natural Science Foundation of China(42030103)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(2021QNLM020001-6)the Laoshan National Laboratory of Science and Technology Foundation(LSKJ202203400).
文摘Seismic prediction of cracks is of great significance in many disciplines,for which the rock physics model is indispensable.However,up to now,multitudinous analytical models focus primarily on the cracked rock with the isotropic background,while the explicit model for the cracked rock with the anisotropic background is rarely investigated in spite of such case being often encountered in the earth.Hence,we first studied dependences of the crack opening displacement tensors on the crack dip angle in the coordinate systems formed by symmetry planes of the crack and the background anisotropy,respectively,by forty groups of numerical experiments.Based on the conclusion from the experiments,the analytical solution was derived for the effective elastic properties of the rock with the inclined penny-shaped cracks in the transversely isotropic background.Further,we comprehensively analyzed,according to the developed model,effects of the crack dip angle,background anisotropy,filling fluid and crack density on the effective elastic properties of the cracked rock.The analysis results indicate that the dip angle and background anisotropy can significantly either enhance or weaken the anisotropy degrees of the P-and SH-wave velocities,whereas they have relatively small effects on the SV-wave velocity anisotropy.Moreover,the filling fluid can increase the stiffness coefficients related to the compressional modulus by reducing crack compliance parameters,while its effects on shear coefficients depend on the crack dip angle.The increasing crack density reduces velocities of the dry rock,and decreasing rates of the velocities are affected by the crack dip angle.By comparing with exact numerical results and experimental data,it was demonstrated that the proposed model can achieve high-precision estimations of stiffness coefficients.Moreover,the assumption of the weakly anisotropic background results in the consistency between the proposed model and Hudson's published theory for the orthorhombic rock.
文摘For the quad tilt rotor aircraft, a computational fluid dynamics method based on multiple reference frames (MRF) was used to analyze the influence of aerodynamic layout parameters on the aerodynamic characteristics of the quad tilt rotor aircraft. Firstly, a numerical simulation method for the interference flow field of the quad tilt rotor aircraft is established. Based on this method, the aerodynamic characteristics of isolated rotors, rotor combinations at different lateral positions on the wing, and rotor rotation directions under different inflow velocities were calculated and analyzed, in order to grasp their aerodynamic interference laws and provide reference for the design and control theory research of such aircraft.
文摘The conventional approach to optimizing tilt angles for fixed solar panels aims to maximize energy generation over the entire year. However, in the context of a supply controlled electric grid, where solar energy availability varies, this criterion may not be optimal. This study explores two alternative optimization criteria focused on maximizing baseload supply potential and minimizing required storage capacity to address seasonality in energy generation. The optimal tilt angles determined for these criteria differed significantly from the standard approach. This research highlights additional factors crucial for designing solar power systems beyond gross energy generation, essential for the global transition towards a fully renewable energy-based electric grid in the future.
基金The National Natural Science Foundation of China (No.10971024)the Specialized Research Fund for the Doctoral Program of Higher Education ( No. 200802860024)+1 种基金the Natural Science Foundation of Jiangsu Province ( No. BK2010393 )Scientific Research Foundation of Guangxi University ( No. XJZ100246)
文摘A module pair (C, T) over an Artin algebra A is called a tilting pair if both C and T are selforthogonal modules and the conditions T e ada C and C ∈ add T hold. The duality on a tilting pair is investigated to discuss the condition under which the dual of a tilting pair is also a tilting pair. A necessary and sufficient condition of (D(7), D(C) ) being an n-tilting pair over an Artin algebra for an n-tilting pair ( C, 7) is given. And, a necessary and sufficient condition of ( T^*, C^* ) being an ntilting pair over a selfinjective Artin algebra for an n-tilting pair (C, 7) is also given.
文摘AIM:To evaluate the ocular outcomes and to elucidate possible mechanisms underlying intraocular pressure(IOP)change following the head-down tilt(HDT)test.METHODS:The study included 21 participants at the Department of Ophthalmology of Tongji Hospital.Subjects received the test of I-care tonometry,enhanced depth imaging optical coherence tomography and heart rate variability(HRV)analysis before and after 15 min HDT test.The lumen area of Schlemm’s canal(SCAR),IOP,HRV were calculated.RESULTS:IOP increased significantly after 20°head down position from 14.0±3.0 to 17.0±3.3 mm Hg(P<0.001).SCAR decreased from 13449.0±5454.9μm^(2) at sitting condition to 9576.6±4130.9μm^(2) post 15 min HDT test.High frequency(HF)indices increased significantly from 1462±865 Hz at baseline to 2128±824 Hz.Heart rate(HR)decreased significantly from 76±11.48 to 70±11.52 bpm after the HDT.The linear regression analysis showed that the difference of HF and SCAR significantly correlated with each other during the HDT(R^(2)=20%,P=0.04).CONCLUSION:These outcomes perform the first evidence of the activation of autonomic nervous system of HDT may cause the collapse of Schlemm’s canal lumen,which in turn leading to the increased IOP.
基金ThispaperissupportedbyNationalNatureScienceFoundation (No .5 96 35 16 0 )AdvancedUniversityDoctoralSubjectFoundation (No .980 2 1311)
文摘Off line programming provides an essential link between CAD and CAM, whose development will result in greater use of robotic arc welding. An arc welding system with a robot and a rotating/tilting positioner is one of the most typical workcells. The inverse kinematics of robot and positioner is the foundation of the off line programming system. The previous researchers only focused on a special solution of the positioner inverse kinematics, which is the solution at down hand welding position. In this paper, we introduce a method for representing welding position. Then a general algorithm of rotating/tilting positioner inverse kinematics is presented, and an approach to find the unique solution of the inverse kinematics is discussed. The simulation experiment results show that the general algorithm can improve the ability of robotic arc welding off line programming system to program all types of welding positions.
文摘The development of the tilting train can contribute to solve the economic burden and enhance the transportation means of areas that did not share the benefits of the high speed railway. But the dynamic behavior caused by the interaction between the train and the track as well as the environmental vibrations along the railway should be evaluated to secure the safety of the train and riding comfort. In this paper a study on the characteristics for ground vibration due to the tilting train travelling in the conventional line are carried out. The transmitted load into the ground is computed through a study on the interrelation between the tilting car and the line. This load is applied into the numerical model which is one for the analysis of ground vibration due to the travelling tilting car. The far fields on the numerical model are formed by the absorbing boundary using dashpot, one of the most widely used absorbing boundary in finite element analysis. Using this numerical model, the analysis of the ground vibration characteristics caused by travelling tilting car is performed. From the analysis, it is shown that the transferred load due to the tilting train is larger than that of the conventional train.
基金supported by National Natural Science Foundation of China (Grant No. 50635060)National Hi-tech Research and Development Program of China (863 Program,Grant No.2007AA050501)+1 种基金National Key Basic Research Program of China (973 Program,Grant No. 2007CB707705,Grant No. 2007CB707706)Research Funds for the Central Universities of China
文摘The recent research on stability of gas bearing-rotor systems still mostly adopts the same method as in oil-lubricated bearing-rotor systems.The dynamic coefficients of gas bearings in the case that the perturbation frequencies are same as the rotating speed are used to carry out the stability analysis of rotor systems.This method does not contact the frequency characteristics of dynamic stiffness and damping coefficients of gas bearings with the dynamical behaviors of rotor systems.Furthermore,the effects of perturbation frequencies on the stability of systems are not taken into account.In this paper,the dynamic stiffness and damping coefficients of tilting-pad gas bearings are calculated by the partial derivative method.On the base of solution of dynamic coefficients,two computational models are produced for stability analysis on rotor systems supported by tilting-pad gas bearings according to whether the degrees of the freedom of pads tilting motions are included in the equations of motion or not.In the condition of considering the frequency effects of dynamic coefficients of tilting-pad gas bearings,the corresponding eigenvalues of the rigid and first five vibration modes of the system with the working speeds of 8-30 kr/min are computed through iteratively solving the equations of motion of rotor-system by using two computational models,respectively.According to the obtained eigenvalues,the stability of rotor system is analyzed.The results indicate that the eigenvalues and the stability of rotor system obtained by these two computational models are well agreement each other.They all can more accurately analyze the stability of rotor systems supported by tilting-pad gas bearings.This research has important meaning for perfecting the stability analysis method of rotor systems supported by gas bearings.
基金This project is supported by Research Foundation of Ministry of Railways of China (No.99J45-B) and National Excellent Doctor Degree Dissertation Foundation of Universities (No.200048).
文摘By using tilting carbodies, train can negotiate at a higher speed withoutreducing the passenger's ride quality. This is a good method to allow a significant increase inspeed at existing track to improve the railway transportation capability, and to enhance thecompetition ability of railways with other transportation systems. With the increase of the curvenegotiation speed, the wheel-rail lateral forces and wheel-rail wear of the tilting train willincrease. The self-steering radial bogie is an effective way to solve the problem. The dynamic modelof the tilting passenger car with self-steering bogies is established in detail, and the curvingperformance of the car is investigated.
文摘By direct calculation of rotation matrices of SO(3),we show how certain specific sequence of eight consecutiverotations of digital angles can yield a tilting of a facet mirror.We also design a detailed program specifically to tiltan array of mirrors from planar orientation to the required focusing orientation.We describe how to use the 8-step torealize the focusing of the mirror array.We have found,in our designed program,an important feature of row-sharingduring the rotations for the columns and similarly the column-sharing during the rotations for the row.This feature cansave a lot of operating time during the actual realization of the mechanical movements.