Kriging is an interpolation technique that is used to estimate a variable at an unmeasured location from observed values at nearer locations. In this study, it is used to analyze the spatial distributions of the healt...Kriging is an interpolation technique that is used to estimate a variable at an unmeasured location from observed values at nearer locations. In this study, it is used to analyze the spatial distributions of the health risk of indoor air pollution. The study case is an air-conditioned office building that has 16 floors, located in Taipei, Taiwan. The Kriging method is used in drawing health risk maps on the basis of limited sample points and facilitates investigating the possible source of pollution.展开更多
A cross-sectional study was conducted at Mukim Parit Lubok (MPL) and Parit Raja (PR), Batu Pahat, Malaysia. The main objective of this study was to determine the aluminium concentration in drinking water and to perfor...A cross-sectional study was conducted at Mukim Parit Lubok (MPL) and Parit Raja (PR), Batu Pahat, Malaysia. The main objective of this study was to determine the aluminium concentration in drinking water and to perform health risk assessment prediction among respondents from these two residential areas. A total of 100 respondents were selected from the study areas based on inclusive and exclusive criteria. Two duplicates of treated water samples were taken from each respondent’s house using 200mL high-density polyethylene (HDPE) bottles and 0.4 mL (69%) pure concentrated nitric acid were added as a preservative. Aluminium concentrations were analyzed using a Lambda 25 UV/V spectrophotometer. The result showed that aluminium concentration in drinking water from MPL was 0.18 ± 0.022 mg/L and 0.22 ± 0.044 mg/L for PR. Statistical analysis showed that 14 (28%) water samples collected from MPL and 35 (70%) from PR recorded concentration of aluminium above the standard limit set by the Ministry of Health, Malaysia for drinking water guideline (0.2 mg/L). The mean value of Chronic Daily Intake (CDI) of aluminium in drinking water from PR (0.00707 mg/kg/day) was significantly higher compared to MPL (0.00164 mg/kg/day). Hazard Index (HI) calculation showed that all respondents had “HI” of less than 1. In conclusion, there was an unlikely potential for adverse health effects from aluminium intake in drinking water from both study areas. However, it was necessary for some actions to be taken in order to reduce aluminium levels found in drinking water for both locations.展开更多
Pollution of different elements (air, water, soil and subsoil) resulting both from accidental events and from ordinary industrial and civil activities causes negative effects on the human health and on the environment...Pollution of different elements (air, water, soil and subsoil) resulting both from accidental events and from ordinary industrial and civil activities causes negative effects on the human health and on the environment. The present paper examines the analysis of a contaminated site, focusing the attention on the negative effects for receptors exposed to soil and groundwater contamination caused by industrial activities. The case study investigated is a contaminated area located in the industrial district of Trento North once occupied by the Italian Carbochimica plant. Pollution in that area is mainly due to contamination of soil and groundwater with polycyclic aromatic hydrocarbons. The methodology applied is the risk evaluation for human health, in terms of individual cancer risk and hazard index. In particular the attention has been focused on a specific migration way: if pollutants in the soil or in the groundwater undergo a phase change, they spread and get to the soil surface, causing a dispersion of vapors in the atmosphere. In this case risk assessment calls for the evaluation of volatilization factor. Among the different models dealing with the estimation of volatilization factor, those mostly known and used in the national and international field of Human Health Risk Assessment were chosen: Jury’s and Farmer’s models. A sensitivity analysis of models was performed, in order to identify the most significant parameters to estimate the volatilization factors among the wide range of input parameters for the application of models. Performing an accurate selection and data processing of the contaminated site, models for the volatilization factors calculation are applied, thus evaluating air concentrations and Human Health Risk. The analysis of the resulting estimates is an excellent aid to draw interesting conclusions and to verify if the soil and groundwater pollutants volatilization affects the human health considerably.展开更多
文摘Kriging is an interpolation technique that is used to estimate a variable at an unmeasured location from observed values at nearer locations. In this study, it is used to analyze the spatial distributions of the health risk of indoor air pollution. The study case is an air-conditioned office building that has 16 floors, located in Taipei, Taiwan. The Kriging method is used in drawing health risk maps on the basis of limited sample points and facilitates investigating the possible source of pollution.
文摘A cross-sectional study was conducted at Mukim Parit Lubok (MPL) and Parit Raja (PR), Batu Pahat, Malaysia. The main objective of this study was to determine the aluminium concentration in drinking water and to perform health risk assessment prediction among respondents from these two residential areas. A total of 100 respondents were selected from the study areas based on inclusive and exclusive criteria. Two duplicates of treated water samples were taken from each respondent’s house using 200mL high-density polyethylene (HDPE) bottles and 0.4 mL (69%) pure concentrated nitric acid were added as a preservative. Aluminium concentrations were analyzed using a Lambda 25 UV/V spectrophotometer. The result showed that aluminium concentration in drinking water from MPL was 0.18 ± 0.022 mg/L and 0.22 ± 0.044 mg/L for PR. Statistical analysis showed that 14 (28%) water samples collected from MPL and 35 (70%) from PR recorded concentration of aluminium above the standard limit set by the Ministry of Health, Malaysia for drinking water guideline (0.2 mg/L). The mean value of Chronic Daily Intake (CDI) of aluminium in drinking water from PR (0.00707 mg/kg/day) was significantly higher compared to MPL (0.00164 mg/kg/day). Hazard Index (HI) calculation showed that all respondents had “HI” of less than 1. In conclusion, there was an unlikely potential for adverse health effects from aluminium intake in drinking water from both study areas. However, it was necessary for some actions to be taken in order to reduce aluminium levels found in drinking water for both locations.
文摘Pollution of different elements (air, water, soil and subsoil) resulting both from accidental events and from ordinary industrial and civil activities causes negative effects on the human health and on the environment. The present paper examines the analysis of a contaminated site, focusing the attention on the negative effects for receptors exposed to soil and groundwater contamination caused by industrial activities. The case study investigated is a contaminated area located in the industrial district of Trento North once occupied by the Italian Carbochimica plant. Pollution in that area is mainly due to contamination of soil and groundwater with polycyclic aromatic hydrocarbons. The methodology applied is the risk evaluation for human health, in terms of individual cancer risk and hazard index. In particular the attention has been focused on a specific migration way: if pollutants in the soil or in the groundwater undergo a phase change, they spread and get to the soil surface, causing a dispersion of vapors in the atmosphere. In this case risk assessment calls for the evaluation of volatilization factor. Among the different models dealing with the estimation of volatilization factor, those mostly known and used in the national and international field of Human Health Risk Assessment were chosen: Jury’s and Farmer’s models. A sensitivity analysis of models was performed, in order to identify the most significant parameters to estimate the volatilization factors among the wide range of input parameters for the application of models. Performing an accurate selection and data processing of the contaminated site, models for the volatilization factors calculation are applied, thus evaluating air concentrations and Human Health Risk. The analysis of the resulting estimates is an excellent aid to draw interesting conclusions and to verify if the soil and groundwater pollutants volatilization affects the human health considerably.