期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
The mechanical measuring method of welding heat source efficiency 被引量:1
1
作者 张建强 张国栋 +2 位作者 何洁 王承权 陈冰泉 《China Welding》 EI CAS 2007年第4期51-55,共5页
Based on the principle of residual deformation induced by superposition of the welding residual stress and working stress, the welding heat source efficiency has been determined by measuring displacement changes of sp... Based on the principle of residual deformation induced by superposition of the welding residual stress and working stress, the welding heat source efficiency has been determined by measuring displacement changes of specimens under loading and unloading in tensile tests, and combining with calculating welding parameters. Meanwhile, the welding heat source eficiencies obtained are compared with those of the measuring-calculating method. The research results show that the welding heat source efficiencies are almost the same as those obtained by the measuring-calculating method. Therefore, the welding heat source efficiency can be determined accurately by this method, and a new determining method of the heat source efficiency for the welding heat process calculating has been provided. 展开更多
关键词 welding heat source efficiency welding stress welding distortion mechanical measuring-calculating method
下载PDF
Hierarchical lichee-like Fe_(3)O_(4) assemblies and their high heating efficiency in magnetic hyperthermia
2
作者 李文宇 李文涛 +5 位作者 李榜全 董丽娟 孟田华 霍格 梁工英 卢学刚 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第10期394-399,共6页
A nontoxic and biocompatible thermoseed is developed for the magnetic hyperthermia.Two kinds of thermoseed materials:hierarchical hollow and solid lichee-like Fe_(3)O_(4) assemblies,are synthesized by a facile hydroth... A nontoxic and biocompatible thermoseed is developed for the magnetic hyperthermia.Two kinds of thermoseed materials:hierarchical hollow and solid lichee-like Fe_(3)O_(4) assemblies,are synthesized by a facile hydrothermal method.The crystal structure of Fe_(3)O_(4) assemblies are characterized by x-ray diffraction,scanning electron microscopy,and transmission electron microscopy.Moreover,the prepared Fe_(3)O_(4) assemblies are used as a magnetic heat treatment agent,and their heating efficiency is investigated.Compared to solid assembly,hollow lichee-like Fe_(3)O_(4) assembly exhibits a higher specific absorption rate of 116.53 W/g and a shorter heating time,which is ascribed to its higher saturation magnetization,larger initial particle size,and the unique hierarchical hollow structure.Furthermore,the magnetothermal effect is primarily attributed to Neel relaxation.Overall,we propose a facile and convenient approach to enhance the heating efficiency of magnetic nanoparticles by forming hollow hierarchical assemblies. 展开更多
关键词 magnetic hyperthermia heating efficiency hierarchical Fe_(3)O_(4)assemblies
下载PDF
Coupled heat-fluid-solid numerical study on heat extraction potential of hot dry rocks based on discrete fracture network model
3
作者 Daobing Wang Haiyan Zhu +6 位作者 Marembo Micheal Xuanhe Tang Qin Li Xiangyi Yi Dongliang Sun Bo Yu Qiang Liu 《Energy Geoscience》 2023年第4期81-94,共14页
Fracture networks within hot dry rock(HDR)geothermal reservoirs are complex,and heat extraction via water injection is thus a coupled process of heat-fluid-solid multifield.In this paper,utilizing the theory of normal... Fracture networks within hot dry rock(HDR)geothermal reservoirs are complex,and heat extraction via water injection is thus a coupled process of heat-fluid-solid multifield.In this paper,utilizing the theory of normally distributed random functions,we develop a corresponding pre-processing subprogram to establish a discrete network model of complex fracture distribution in HDR reservoirs;then construct a heat-fluid-solid finite element model for heat extraction via water injection and compare the numerical solution with the analytical solution of the one-dimensional non-isothermal consolidation problem for verification.The numerical simulation results show that the main factors affecting the heat extraction efficiency of HDR reservoirs include fracture width,fracture density,fracture permeability,and matrix permeability.When a HDR reservoir is injected with water for heat extraction,there is a certain threshold value of these influential parameters,beyond which the outlet temperature drops significantly,resulting in an obvious thermal breakthrough.When injecting water for heat extraction,the values of these parameters should be controlled and kept at a reasonable level,otherwise,the HDR reservoir may enter a thermal breakthrough stage in advance,which is not conducive for long-period heat extraction.Influenced by the random distribution of complex fractures,the leading edge of the cold front may present an irregular distribution.During the process of heat extraction,the stress gradually changes from a compressional state to a tensile state,which induces further damage to the HDR reservoir. 展开更多
关键词 Enhanced geothermal system Seepage and heat transfer Complex fractures heat extraction efficiency Multifield coupling
下载PDF
R&D on Resistive Heat Exchangers for HTS High Rated Current Leads
4
作者 毕延芳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第6期757-764,共8页
The HTS current leads of superconducting magnets for large scale fusion devices and high energy particle colliders can reduce the power consumption for cooling by 2/3 compared with conventional leads. The resistive se... The HTS current leads of superconducting magnets for large scale fusion devices and high energy particle colliders can reduce the power consumption for cooling by 2/3 compared with conventional leads. The resistive sections of high-rated current leads are usually made of a heat exchanger cooled by gas flow. The supply of the cooling mass flow incurs more than 90% of the cooling cost for the HTS leads. The mass flow rate requirement depends not only on the length and material of the resistive heat exchanger, but also on the heat transfer coefficient and HEX surface, the joint resistance at the cold end of a sheet-stack HEX with a larger specific presented in the paper. The test results of efficiency can be achieved. and its cooling approach. The design and operation surface and a much smaller hydraulic diameter are an HTS lead optimized for 8 kA show that a 98.4% 展开更多
关键词 current lead resistive heat exchanger heat exchanger efficiency HTS
下载PDF
Application of Technology of Additive Manufacturing in Radiators and Heat Exchangers
5
作者 Chunhua Sun Guangqing Shang 《Journal of Power and Energy Engineering》 2022年第11期35-44,共10页
Radiators and heat exchangers play a key role in the long-term and stable operation of the equipment. The emergence of additive manufacturing technology has released the freedom of design, enabling many innovative str... Radiators and heat exchangers play a key role in the long-term and stable operation of the equipment. The emergence of additive manufacturing technology has released the freedom of design, enabling many innovative structures of radiators and heat exchangers to be manufactured. The paper reviews the application of additive manufacturing in new radiators and heat exchangers. The technology of additive manufacturing boosts the development of new radiators and heat exchangers, which improves heat dissipation performance and heat exchange efficiency. This paper will provide a new idea and method for the development of radiators and heat exchangers via the application of additive manufacturing. 展开更多
关键词 RADIATORS heat Exchangers Additive Manufacturing heat Dissipation Performance heat Exchange efficiency
下载PDF
Optimization of fin geometry in heat convection with entransy theory
6
作者 程雪涛 张勤昭 +1 位作者 徐向华 新刚 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第2期139-144,共6页
The entransy theory developed in recent years is used to optimize the aspect ratio of a plate fin in heat convection.Based on a two-dimensional model,the theoretical analysis shows that the minimum thermal resistance ... The entransy theory developed in recent years is used to optimize the aspect ratio of a plate fin in heat convection.Based on a two-dimensional model,the theoretical analysis shows that the minimum thermal resistance defined with the concept of entransy dissipation corresponds to the maximum heat transfer rate when the temperature of the heating surface is fixed.On the other hand,when the heat flux of the heating surface is fixed,the minimum thermal resistance corresponds to the minimum average temperature of the heating surface.The entropy optimization is also given for the heat transfer processes.It is observed that the minimum entropy generation,the minimum entropy generation number,and the minimum revised entropy generation number do not always correspond to the best heat transfer performance.In addition,the influence factors on the optimized aspect ratio of the plate fin are also discussed.The optimized ratio decreases with the enhancement of heat convection,while it increases with fin thermal conductivity increasing. 展开更多
关键词 entransy dissipation thermal resistance heat convection optimization fin efficiency
下载PDF
Development Features of Supercritical (Ultra-Supercritical) Technology in the World and Experiences We Can Learn 被引量:5
7
作者 Weixiang Ye 《Journal of Power and Energy Engineering》 2016年第6期1-3,共3页
The development and technical characteristics in different stages of supercritical (ultra-Supercritical) technology abroad are introduced in this paper. At the same time, according to the development trend of supercri... The development and technical characteristics in different stages of supercritical (ultra-Supercritical) technology abroad are introduced in this paper. At the same time, according to the development trend of supercritical (ultra-supercritical) technology, the corresponding revelations are given in this paper. That is: It is an inevitable choice to develop supercritical (ultra-supercritical) technology if we want to improve the thermal efficiency and heat efficiency. 展开更多
关键词 Supercritical (Ultra-Supercritical) Technology The Thermal efficiency heat efficiency
下载PDF
Thermal Performance of Elliptical Fin-and-Tube Heat Exchangers with Vortex Generator under Various Inclination Angles 被引量:2
8
作者 WANG Yucheng ZHAO Wensheng +2 位作者 WANG Pengfei JIANG Jin LUO Xiangyu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第1期257-270,共14页
Elliptical fin-and-tube heat exchangers are commonly used in air conditioning,heating,refrigeration industries,and ventilation.This study numerically investigates the effect of vortex generators on the performance of ... Elliptical fin-and-tube heat exchangers are commonly used in air conditioning,heating,refrigeration industries,and ventilation.This study numerically investigates the effect of vortex generators on the performance of elliptical fin-and-tube heat exchanger under different inclination angles.In this study,air flow that is in the transitional regime is selected as the working fluid.Reynolds numbers at the inlet are varied in a range of 1300 to 2100,and the shear stress transport k-ωturbulence model is selected to solve the non-closure of basic turbulence equations.The ellipticity ratios of the tubes which are used for the analysis are between 0.6 and 1.0,and the inclination angles are varied from 15°to 75°.The effects of different inclination angles of vortex generators on the Colburn factor j,friction factor f,and efficiency index j/f are analyzed.The friction and Colburn factors are observed to increase with increasing vortex generator inclination angles.It is found that the efficiency factors for a 15°vortex generator inclination angle at 0.6,0.7,0.8,and 0.9 ellipticity ratios improve compared to the corresponding cases with no vortex generator.However,the vortex generator cannot improve the efficiency factor of the circular tube heat exchanger.The 3 D CFD method employed by this study has great potential for use in optimally designing the arrangement of the vortex generators to enhance the performance of heat exchangers. 展开更多
关键词 heat exchanger vortex generator Colburn factor friction factor heat exchanger efficiency
原文传递
Highly anisotropic thermal conductivity of few-layer CrOCl for efficient heat dissipation in graphene device 被引量:1
9
作者 Xiaoming Zheng Yuehua Wei +11 位作者 Zhenhua Wei Wei Luo Xiao Guo Xiangzhe Zhang Jinxin Liu Yangbo Chen Gang Peng Weiwei Cai Shiqiao Qin Han Huang Chuyun Deng Xueao Zhang 《Nano Research》 SCIE EI CSCD 2022年第10期9377-9385,共9页
With the packing density growing continuously in integrated electronic devices,sufficient heat dissipation becomes a serious challenge.Recently,dielectric materials with high thermal conductivity have brought insight ... With the packing density growing continuously in integrated electronic devices,sufficient heat dissipation becomes a serious challenge.Recently,dielectric materials with high thermal conductivity have brought insight into effective dissipation of waste heat in electronic devices to prevent them from overheating and guarantee the performance stability.Layered CrOCl,an antiferromagnetic insulator with low-symmetry crystal structure and atomic level flatness,might be a promising solution to the thermal challenge.Herein,we have systematically studied the thermal transport of suspended few-layer CrOCl flakes by microRaman thermometry.The CrOCl flakes exhibit high thermal conductivities along zigzag direction,from~392±33 to~1,017±46 W·m^(−1)·K^(−1) with flake thickness from 2 to 50 nm.Besides,pronounced thickness-dependent thermal conductivity ratio(/from~2.8±0.24 to~4.3±0.25)has been observed in the CrOCl flakes,attributed to the discrepancy of phonon dispersion and phonon surface scattering.As a demonstration to the heat sink application of layered CrOCl,we then investigate the energy dissipation in graphene devices on CrOCl,SiO_(2) and hexagonal boron nitride(h-BN)substrates,respectively.The graphene device temperature rise on CrOCl is only 15.4%of that on SiO_(2) and 30%on h-BN upon the same electric power density,indicating the efficient heat dissipation of graphene device on CrOCl.Our study provides new insights into two-dimentional(2D)dielectric material with high thermal conductivity and strong anisotropy for the application of thermal management in electronic devices. 展开更多
关键词 CrOCl High thermal conductivity strong anisotropy efficient heat dissipation heat sink graphene devices
原文传递
Application analysis of efficient heat dissipation of electronic equipment based on flexible nanocomposites 被引量:1
10
作者 Dongsheng Yang Qi Yao +4 位作者 Mintao Jia Jun Wang Lixin Zhang Yingli Xu Xi Qu 《Energy and Built Environment》 2021年第2期157-166,共10页
The efficient heat dissipation of electronic equipment is very important,its heat dissipation performance directly determines the life of the equipment itself.A hand-held electronic communications equipment,when used ... The efficient heat dissipation of electronic equipment is very important,its heat dissipation performance directly determines the life of the equipment itself.A hand-held electronic communications equipment,when used in surface temperature is exorbitant,need to heat dissipation equipment efficiently,to ensure that the use of comfort in the handheld.In accordance with this requirement,this article presents a flexible composite material based on nano-efficient cooling methods that can keep the layout,through the improvement of internal thermal path,it can achieve the effective heat dissipation.The network thermal resistance method is used to analyze the heat transfer in the equipment,and the thermal analysis of the local thermal resistance is carried out.At the same time,through the modeling of electronic equipment and the analysis of finite elements,the temperature drop of the equipment after improvement is accurately judged.Finally,the device experimental performance comparison before and after the optimization of the standby mode and working mode is verified.The results show that the optimized equipment heat source temperature can be reduced by up to 8.5℃,the surface temperature of the equipment can be reduced by about 5℃~7℃,and the final control equipment in the steady standby state of the temperature of about 39±0.5℃,to ensure the comfort of use,and also improved the service life of the equipment.The efficient thermal design of electronic equipment based on flexible nanocomposites can provide a convenient and reliable cooling solution for high-heat flow density devices. 展开更多
关键词 NANOCOMPOSITES Electronic equipment Network thermal resistance Efficient heat dissipation Thermal analysis
原文传递
Thermal Management of Electrified Propulsion System for Low-Carbon Vehicles 被引量:1
11
作者 Bo Li Huang Kuo +6 位作者 Xuehui Wang Yiyi Chen Yangang Wang David Gerada Sean Worall Ian Stone Yuying Yan 《Automotive Innovation》 CSCD 2020年第4期299-316,共18页
An overview of current thermal challenges in transport electrification is introduced in order to underpin the research developments and trends of recent thermal management techniques.Currently,explorations of intellig... An overview of current thermal challenges in transport electrification is introduced in order to underpin the research developments and trends of recent thermal management techniques.Currently,explorations of intelligent thermal management and control strategies prevail among car manufacturers in the context of climate change and global warming impacts.Therefore,major cutting-edge systematic approaches in electrified powertrain are summarized in the first place.In particular,the important role of heating,ventilation and air-condition system(HVAC)is emphasised.The trends in developing efficient HVAC system for future electrified powertrain are analysed.Then electric machine efficiency is under spotlight which could be improved by introducing new thermal management techniques and strengthening the efforts of driveline integrations.The demanded integration efforts are expected to provide better value per volume,or more power output/torque per unit with smaller form factor.Driven by demands,major thermal issues of high-power density machines are raised including the comprehensive understanding of thermal path,and multiphysics challenges are addressed whilst embedding power electronic semiconductors,non-isotropic electromagnetic materials and thermal insulation materials.Last but not least,the present review has listed several typical cooling techniques such as liquid cooling jacket,impingement/spray cooling and immersion cooling that could be applied to facilitate the development of integrated electric machine,and a mechanic-electric-thermal holistic approach is suggested at early design phase.Conclusively,a brief summary of the emerging new cooling techniques is presented and the keys to a successful integration are concluded. 展开更多
关键词 Thermal management Electrified powertrain Efficient cooling and heating Electric machine and control High power electronics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部