This research entails the study of heat and mass transfer of nanofluid flow in a fluidized bed dryer used in tea drying processes in presence of induced magnetic field. A mathematical model describing the fluid flow i...This research entails the study of heat and mass transfer of nanofluid flow in a fluidized bed dryer used in tea drying processes in presence of induced magnetic field. A mathematical model describing the fluid flow in a Fluidized bed dryer was developed using the nonlinear partial differential equations. Due to their non-linearity, the equations were solved numerically by use of the finite difference method. The effects of physical flow parameters on velocity, temperature, concentration and magnetic induction profiles were studied and results were presented graphically. From the mathematical analysis, it was deduced that addition of silver nanoparticles into the fluid flow enhanced velocity and temperature profiles. This led to improved heat transfer in the fluidized bed dryer, hence amplifying the tea drying process. Furthermore, it was noted that induced magnetic field tends to decrease the fluid velocity, which results in uniform distribution of heat leading to efficient heat transfer between the tea particles and the fluid, thus improving the drying process. The research findings provide information to industries on ways to optimize thermal performance of fluidized bed dryers.展开更多
The structure and seasonal variation of the East Asian Subtropical Westerly Jet (EAWJ) and associations with heating fields over East Asia are examined by using NCEP/NCAR reanalysis data. Obvious differences exist i...The structure and seasonal variation of the East Asian Subtropical Westerly Jet (EAWJ) and associations with heating fields over East Asia are examined by using NCEP/NCAR reanalysis data. Obvious differences exist in the westerly jet intensity and location in different regions and seasons due to the ocean-land distribution and seasonal thermal contrast, as well as the dynamic and thermodynamic impacts of the Tibetan Plateau. In winter, the EAWJ center is situated over the western Pacific Ocean and the intensity is reduced gradually from east to west over the East Asian region. In summer, the EAWJ center is located over the north of the Tibetan Plateau and the jet intensity is reduced evidently compared with that in winter. The EAWJ seasonal evolution is characterized by the obvious longitudinal inconsistency of the northward migration and in-phase southward retreat of the EAWJ axis. A good correspondence between the seasonal variations of EAWJ and the meridional differences of air temperature (MDT) in the mid-upper troposphere demonstrates that the MDT is the basic reason for the seasonal variation of EAWJ. Correlation analyses indicate that the Kuroshio Current region to the south of Japan and the Tibetan Plateau are the key areas for the variations of the EAWJ intensities in winter and in summer, respectively. The strong sensible and latent heating in the Kuroshio Current region is closely related to the intensification of EAWJ in winter. In summer, strong sensible heating in the Tibetan Plateau corresponds to the EAWJ strengthening and southward shift, while the weak sensible heating in the Tibetan Plateau is consistent with the EAWJ weakening and northward migration.展开更多
In this study, a parameterization scheme based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and in-situ data was tested for deriving the regional surface heating field over a heterogeneous landscape...In this study, a parameterization scheme based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and in-situ data was tested for deriving the regional surface heating field over a heterogeneous landscape. As a case study, the methodology was applied to the whole Tibetan Plateau (TP) area. Four images of MODIS data (i.e., 30 January 2007, 15 April 2007, 1 August 2007, and 25 October 2007) were used in this study for comparison among winter, spring, summer, and autumn. The results were validated using the observations measured at the stations of the Tibetan Observation and Research Platform (TORP). The results show the following: (1) The derived surface heating field for the TP area was in good accord with the land-surface status, showing a wide range of values due to the strong contrast of surface features in the area. (2) The derived surface heating field for the TP was very close to the field measurements (observations). The APD (absolute percent difference) between the derived results and the field observations was 〈10%. (3) The mean surface heating field over the TP increased from January to April to August, and decreased in October. Therefore, the reasonable regional distribution of the surface heating field over a heterogeneous landscape can be obtained using this methodology. The limitations and further improvement of this method are also discussed.展开更多
Considering the characteristic of selective heating of microwave and the treatment of titania-bearing BF slag, a mathematical model for the heating of a slag specimen is developed. The temperature distribution in the ...Considering the characteristic of selective heating of microwave and the treatment of titania-bearing BF slag, a mathematical model for the heating of a slag specimen is developed. The temperature distribution in the specimen is studied by numerical simulation. The temperature in the center of the cylindrical slag specimen is the highest and the temperature decreases when the radius increases rapidly. In this case, the temperature rising rate decreases with heating time rapidly, and it tends to zero when the heating time is up to 150 s.展开更多
An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of...An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of temperature field,such as the induction frequency,the dimension of coil and the gap between coil and workpiece,are investigated considering temperature-dependent material properties by using FLUX 2Dsoftware.The temperature field characteristic in ultra-high induction heating is obtained and discussed.The numerical values are compared with the experimental results.A good agreement between them is observed with 7.9% errors.展开更多
The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 x 5 rod bundle with a s...The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 x 5 rod bundle with a spacer grid. The field synergy principle is used to discuss the mechanism of heat transfer enhancement using mixing vanes according to computational fluid dynamics results, including a spacer grid without mixing vanes, one with a split mixing vane, and one with a separate mixing vane. The results show that the field synergy principle is feasible to explain the mechanism of heat transfer enhancement in a fuel assembly. The enhancement in subchannels is more effective than on the rod's surface. If the pressure loss is ignored, the performance of the split mixing vane is superior to the separate mixing vane based on the enhanced heat transfer. Increasing the blending angle of the split mixing vane improves heat transfer enhancement, the maximum of which is 7.1%. Increasing the blending angle of the separate mixing vane did not significantly enhance heat transfer in the rod btmdle, and even prevented heat transfer at a blending angle of 50%. This fmding testifies to the feasibility of predicting heat transfer in a rod bundle with a spacer grid by field synergy, and upon comparison with analyzed flow features only, the field synergy method may provide more accurate guidance for optimizing the use of mixing vanes.展开更多
In local post weld heat treatment, the temperature difference is the criterion of the process. The temperature field in the main stream pipe under local post weld heat treatment is simulated by finite element method. ...In local post weld heat treatment, the temperature difference is the criterion of the process. The temperature field in the main stream pipe under local post weld heat treatment is simulated by finite element method. A close-loop control program is designed to simulate the temperature field of two different pipes. Both the skin effect of induction heating and electro-thermal coupled effect are considered in the heating model. The local heat treatment temperature difference at the inner and outer side of the pipe is analyzed and the different convection conditions are also considered. The simulation results show that in appropriate induction heating process, the temperature difference in the pipe can be controlled within 30 ℃.展开更多
This study introduces a novel method of electric field sintering for preparing NdFeB magnets. NdFeB alloy compacts were all sintered by electric fields for 8 min at 1000~C with different preset heating rates. The char...This study introduces a novel method of electric field sintering for preparing NdFeB magnets. NdFeB alloy compacts were all sintered by electric fields for 8 min at 1000~C with different preset heating rates. The characteristics of electric field sintering and the effects of heating rate on the sintering densification of NdFeB alloys were also studied. It is found that electric field sintering is a new non-pressure rapid sintering method for preparing NdFeB magnets with fine grains at a relatively lower sintering temperature and in a shorter sintering time. Using this method, the sintering temperature and process of the compacts can be controlled accurately. When the preset heating rate in- creasing from 5 to 2000~C/s the densification of NdFeB sintered compacts gradHally improves. As the preset heating rate is 2000C/s, Nd-rich phases are small, dispersed and uniformly distributed in the sintered compact, and the magnet has a better microstructure than that made by conventional vacuum sintering. Also, the maximum energy product of the sintered magnet reaches 95% of conventionally vacuum sintered magnets.展开更多
The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid over a stretching sheet is studied. The effect of an induced magnetic field is taken into account. The non...The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid over a stretching sheet is studied. The effect of an induced magnetic field is taken into account. The nonlinear partial differential equations are transformed into ordinary differential equations via the similarity transformation. The transformed boundary layer equations are solved numerically using the shooting method. Numerical results are obtained for various magnetic parameters and Prandtl numbers. The effects of the induced magnetic field on the skin friction coefficient, the local Nusselt number, the velocity, and the temperature profiles are presented graphically and discussed in detail.展开更多
Phase-field modeling approach has been used to study the oxidation behavior of pure Ni when considering heat conduction. In this calculation, the dependence of the coefficient of the Cahn–Hilliard equation Lc on the ...Phase-field modeling approach has been used to study the oxidation behavior of pure Ni when considering heat conduction. In this calculation, the dependence of the coefficient of the Cahn–Hilliard equation Lc on the temperature T was considered. To this end, high-temperature oxidation experiments and phase-field modeling for pure Ni were performed in air under atmospheric pressure at 600,700, and 800?C. The oxidation rate was measured by thermogravimetry and Lc at these temperatures was determined via interactive algorithm. With the Lc-T relationship constructed, oxidation behavior of Ni when considering heat conduction was investigated. The influence of temperature boundaries on the oxidation degree, oxide film thickness, and specific weight gain were discussed. The phase-field modeling approach proposed in this study will give some highlights of the oxidation resistance analysis and cooling measures design of thermal protection materials.展开更多
An analysis of Thermophoresis effect on unsteady magneto-hydrodynamic free convection flow over an inclined porous plate with time dependent suction in presence of magnetic field with heat generation has been consider...An analysis of Thermophoresis effect on unsteady magneto-hydrodynamic free convection flow over an inclined porous plate with time dependent suction in presence of magnetic field with heat generation has been considered by employing Nachtsheim-Swigert shooting iteration technique along with sixth order Runge-Kutta integration scheme. Resulting non-dimensional velocity, temperature and concentration profiles are then presented graphically for different values of the parameters entering into the problem. Finally, the effects of the pertinent parameters on the skin-friction coefficient, the rate of heat transfer (Nusselt number) and wall deposition flux (Stanton number), which are of physical interest, are exhibited in tabular form.展开更多
Heat diffusion across a non-local quasi-stochastic magnetic field in tokamak plasma is numerically studied. The perturbed magnetic field is found to be a key factor in influencing effective radial heat conductivity wh...Heat diffusion across a non-local quasi-stochastic magnetic field in tokamak plasma is numerically studied. The perturbed magnetic field is found to be a key factor in influencing effective radial heat conductivity whether the magnetic field is stochastic or not. Being different from previous work, a non-local perturbed magnetic field is used. Analytical results and numerical simulation results are compared between the conditions with a full and a quasi-perturbed stochastic field. The analytical results are found to be still consistent with numerical simulation results when the perturbed field is quasi-stochastic.展开更多
Expansion is an important operation in the hot extrusion production line of seamless steel tubes, which is to produce proper hollow billets for extrusion. The billet goes through induction heating before expanded to a...Expansion is an important operation in the hot extrusion production line of seamless steel tubes, which is to produce proper hollow billets for extrusion. The billet goes through induction heating before expanded to acquire a proper temperature. In this study, the effects of three types of inhomogeneous temperature fields on 321 stainless tubes during the expansion process were simulated. The results have indicated that it was an optimum temperature filed for expansion, where the temperature varied linearly along radial direction and the temperature was lower on the inner surface. This temperature field is beneficial to improving the stability of expansion and ensuring dimensional accuracy and increasing the utilization rate of tubular billet material.展开更多
In this paper, the Kirchhoffs transformation is popularized to the nonlinear heat conduction problem which the heat conductivity can be expressd as a multinomial of temperature firstly, the boundary condition of heat ...In this paper, the Kirchhoffs transformation is popularized to the nonlinear heat conduction problem which the heat conductivity can be expressd as a multinomial of temperature firstly, the boundary condition of heat conduction problem is determined by analytics.Secondly, the incubation peroid superposition and the linear combination law is employed to simulate the transient phasses transformation in the process of heat treatment of materials. That the begin time of phase transformation, the type of phase transformation and the amount of phase constitution is determined simply.Finally, the three-dimension Dual Reciprocity Boundary Element Method is usedto analysis the total process of various heat treatment of component, the results of numerical calculation of examples show that the method provided in this paper is effectivce.展开更多
Long-term research has been done on the unstable behaviors and electron emission from microprotrusions, but the whole reason is still not clear. It is difficult to study instabilities experimentally since vacuum break...Long-term research has been done on the unstable behaviors and electron emission from microprotrusions, but the whole reason is still not clear. It is difficult to study instabilities experimentally since vacuum breakdown can happen. In this model, we show the factors that lead to thermal instability during field emission. After the Nottingham flux inversion, we see a considerable rise in temperature above a threshold electric field, followed by a thermal runaway. Cathode spots experience unexpected thermal defects and breakdowns, which is a phenomenon known as the Nottingham Inversion Instability. Although the idea of micro protrusions is frequently used in modeling studies, this study concentrates on the thermal effects during field emission from a planar cathode without taking the existence of such protrusions into account. The study reveals how Nottingham’s heating effect changes from heating to cooling. In our study, we have investigated the interaction between Nottingham, Joule heating, and effective work function. The results also imply that faster reaching critical temperature is associated with larger maximum beta values. These discoveries have significance for the design and improvement of high-voltage systems and help to understand vacuum breakdown. The possibility of cathode spot ignition and subsequent vacuum breakdown is predicted by our model, which would make it possible to create a self-consistent model for that.展开更多
The uniformity principle of temperature difference field is very useful in heat exchanger analyses and optimizations.In this paper, we analyze some other heat transfer optimization problems in the thermal management s...The uniformity principle of temperature difference field is very useful in heat exchanger analyses and optimizations.In this paper, we analyze some other heat transfer optimization problems in the thermal management system of spacecrafts,including the cooling of thermal components, the one-stream series-wound heat exchanger network, the volume-to-point heat conduction problem, and the radiative heat transfer optimization problem, and have found that the uniformity principle of temperature difference field also holds. When the design objectives under the given constraints are achieved, the distributions of the temperature difference fields are uniform. The principle reflects the characteristic of the distribution of potential in the heat transfer optimization problems. It is also shown that the principle is consistent with the entransy theory. Therefore, although the principle is intuitive and phenomenological, the entransy theory can be the physical basis of the principle.展开更多
Because of the great importance of thermal instability in nature, in chemical processes, in separation processes, in industrial applications as well as in geophysical and astrophysical engineering, the effect of therm...Because of the great importance of thermal instability in nature, in chemical processes, in separation processes, in industrial applications as well as in geophysical and astrophysical engineering, the effect of thermal diffusion on the combined MHD heat transfer in an unsteady flow past a continuously moving semi-infinite vertical porous plate which is subjected to constant heat has been investigated numerically under the action of strong applied magnetic field taking into account the induced magnetic field. This study is performed for cooling problem with lighter and heavier particles. Numerical solutions for the velocity field, induced magnetic field as well as temperature distribution are obtained for associated parameters using the explicit finite difference method. The obtained results are also discussed with the help of graphs to observe effects of various parameters on the above mentioned quantities.展开更多
文摘This research entails the study of heat and mass transfer of nanofluid flow in a fluidized bed dryer used in tea drying processes in presence of induced magnetic field. A mathematical model describing the fluid flow in a Fluidized bed dryer was developed using the nonlinear partial differential equations. Due to their non-linearity, the equations were solved numerically by use of the finite difference method. The effects of physical flow parameters on velocity, temperature, concentration and magnetic induction profiles were studied and results were presented graphically. From the mathematical analysis, it was deduced that addition of silver nanoparticles into the fluid flow enhanced velocity and temperature profiles. This led to improved heat transfer in the fluidized bed dryer, hence amplifying the tea drying process. Furthermore, it was noted that induced magnetic field tends to decrease the fluid velocity, which results in uniform distribution of heat leading to efficient heat transfer between the tea particles and the fluid, thus improving the drying process. The research findings provide information to industries on ways to optimize thermal performance of fluidized bed dryers.
基金the National Natural Science Foundation of China(Grant No.40333026)
文摘The structure and seasonal variation of the East Asian Subtropical Westerly Jet (EAWJ) and associations with heating fields over East Asia are examined by using NCEP/NCAR reanalysis data. Obvious differences exist in the westerly jet intensity and location in different regions and seasons due to the ocean-land distribution and seasonal thermal contrast, as well as the dynamic and thermodynamic impacts of the Tibetan Plateau. In winter, the EAWJ center is situated over the western Pacific Ocean and the intensity is reduced gradually from east to west over the East Asian region. In summer, the EAWJ center is located over the north of the Tibetan Plateau and the jet intensity is reduced evidently compared with that in winter. The EAWJ seasonal evolution is characterized by the obvious longitudinal inconsistency of the northward migration and in-phase southward retreat of the EAWJ axis. A good correspondence between the seasonal variations of EAWJ and the meridional differences of air temperature (MDT) in the mid-upper troposphere demonstrates that the MDT is the basic reason for the seasonal variation of EAWJ. Correlation analyses indicate that the Kuroshio Current region to the south of Japan and the Tibetan Plateau are the key areas for the variations of the EAWJ intensities in winter and in summer, respectively. The strong sensible and latent heating in the Kuroshio Current region is closely related to the intensification of EAWJ in winter. In summer, strong sensible heating in the Tibetan Plateau corresponds to the EAWJ strengthening and southward shift, while the weak sensible heating in the Tibetan Plateau is consistent with the EAWJ weakening and northward migration.
基金performed under the auspices of the Chinese National Key Programme for Developing Basic Sciences (Grant No. 2010CB951701)the Innovation Projects of the Chinese Academy of Sciences (Grant No. KZCX2-YW-Q11-01)+1 种基金the National Natural Science Foundation of China (Grant Nos. 40825015and 40810059006)EU-FP7 project "CEOP-AEGIS"(Grant No. 212921)
文摘In this study, a parameterization scheme based on Moderate Resolution Imaging Spectroradiometer (MODIS) data and in-situ data was tested for deriving the regional surface heating field over a heterogeneous landscape. As a case study, the methodology was applied to the whole Tibetan Plateau (TP) area. Four images of MODIS data (i.e., 30 January 2007, 15 April 2007, 1 August 2007, and 25 October 2007) were used in this study for comparison among winter, spring, summer, and autumn. The results were validated using the observations measured at the stations of the Tibetan Observation and Research Platform (TORP). The results show the following: (1) The derived surface heating field for the TP area was in good accord with the land-surface status, showing a wide range of values due to the strong contrast of surface features in the area. (2) The derived surface heating field for the TP was very close to the field measurements (observations). The APD (absolute percent difference) between the derived results and the field observations was 〈10%. (3) The mean surface heating field over the TP increased from January to April to August, and decreased in October. Therefore, the reasonable regional distribution of the surface heating field over a heterogeneous landscape can be obtained using this methodology. The limitations and further improvement of this method are also discussed.
基金This study was financially supported by the National Basic Research Program of China (No.2007CB613503).
文摘Considering the characteristic of selective heating of microwave and the treatment of titania-bearing BF slag, a mathematical model for the heating of a slag specimen is developed. The temperature distribution in the specimen is studied by numerical simulation. The temperature in the center of the cylindrical slag specimen is the highest and the temperature decreases when the radius increases rapidly. In this case, the temperature rising rate decreases with heating time rapidly, and it tends to zero when the heating time is up to 150 s.
基金Supported by the National Science and Technology Major Project of China(2012ZX04003081)
文摘An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of temperature field,such as the induction frequency,the dimension of coil and the gap between coil and workpiece,are investigated considering temperature-dependent material properties by using FLUX 2Dsoftware.The temperature field characteristic in ultra-high induction heating is obtained and discussed.The numerical values are compared with the experimental results.A good agreement between them is observed with 7.9% errors.
基金Supported by National Natural Science Foundation of China(Grant No.51376022)
文摘The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 x 5 rod bundle with a spacer grid. The field synergy principle is used to discuss the mechanism of heat transfer enhancement using mixing vanes according to computational fluid dynamics results, including a spacer grid without mixing vanes, one with a split mixing vane, and one with a separate mixing vane. The results show that the field synergy principle is feasible to explain the mechanism of heat transfer enhancement in a fuel assembly. The enhancement in subchannels is more effective than on the rod's surface. If the pressure loss is ignored, the performance of the split mixing vane is superior to the separate mixing vane based on the enhanced heat transfer. Increasing the blending angle of the split mixing vane improves heat transfer enhancement, the maximum of which is 7.1%. Increasing the blending angle of the separate mixing vane did not significantly enhance heat transfer in the rod btmdle, and even prevented heat transfer at a blending angle of 50%. This fmding testifies to the feasibility of predicting heat transfer in a rod bundle with a spacer grid by field synergy, and upon comparison with analyzed flow features only, the field synergy method may provide more accurate guidance for optimizing the use of mixing vanes.
文摘In local post weld heat treatment, the temperature difference is the criterion of the process. The temperature field in the main stream pipe under local post weld heat treatment is simulated by finite element method. A close-loop control program is designed to simulate the temperature field of two different pipes. Both the skin effect of induction heating and electro-thermal coupled effect are considered in the heating model. The local heat treatment temperature difference at the inner and outer side of the pipe is analyzed and the different convection conditions are also considered. The simulation results show that in appropriate induction heating process, the temperature difference in the pipe can be controlled within 30 ℃.
基金the National Natural Science Foundation of China(No.50945018)
文摘This study introduces a novel method of electric field sintering for preparing NdFeB magnets. NdFeB alloy compacts were all sintered by electric fields for 8 min at 1000~C with different preset heating rates. The characteristics of electric field sintering and the effects of heating rate on the sintering densification of NdFeB alloys were also studied. It is found that electric field sintering is a new non-pressure rapid sintering method for preparing NdFeB magnets with fine grains at a relatively lower sintering temperature and in a shorter sintering time. Using this method, the sintering temperature and process of the compacts can be controlled accurately. When the preset heating rate in- creasing from 5 to 2000~C/s the densification of NdFeB sintered compacts gradHally improves. As the preset heating rate is 2000C/s, Nd-rich phases are small, dispersed and uniformly distributed in the sintered compact, and the magnet has a better microstructure than that made by conventional vacuum sintering. Also, the maximum energy product of the sintered magnet reaches 95% of conventionally vacuum sintered magnets.
基金supported by the Fundamental Research Grant Scheme (FRGS) of the Ministry of Higher Education (MOHE) of Malaysia (No. UKM-ST-07-FRGS0036-2009)
文摘The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid over a stretching sheet is studied. The effect of an induced magnetic field is taken into account. The nonlinear partial differential equations are transformed into ordinary differential equations via the similarity transformation. The transformed boundary layer equations are solved numerically using the shooting method. Numerical results are obtained for various magnetic parameters and Prandtl numbers. The effects of the induced magnetic field on the skin friction coefficient, the local Nusselt number, the velocity, and the temperature profiles are presented graphically and discussed in detail.
基金supported by the Beijing Jiaotong University (Grant C15JB00080)
文摘Phase-field modeling approach has been used to study the oxidation behavior of pure Ni when considering heat conduction. In this calculation, the dependence of the coefficient of the Cahn–Hilliard equation Lc on the temperature T was considered. To this end, high-temperature oxidation experiments and phase-field modeling for pure Ni were performed in air under atmospheric pressure at 600,700, and 800?C. The oxidation rate was measured by thermogravimetry and Lc at these temperatures was determined via interactive algorithm. With the Lc-T relationship constructed, oxidation behavior of Ni when considering heat conduction was investigated. The influence of temperature boundaries on the oxidation degree, oxide film thickness, and specific weight gain were discussed. The phase-field modeling approach proposed in this study will give some highlights of the oxidation resistance analysis and cooling measures design of thermal protection materials.
文摘An analysis of Thermophoresis effect on unsteady magneto-hydrodynamic free convection flow over an inclined porous plate with time dependent suction in presence of magnetic field with heat generation has been considered by employing Nachtsheim-Swigert shooting iteration technique along with sixth order Runge-Kutta integration scheme. Resulting non-dimensional velocity, temperature and concentration profiles are then presented graphically for different values of the parameters entering into the problem. Finally, the effects of the pertinent parameters on the skin-friction coefficient, the rate of heat transfer (Nusselt number) and wall deposition flux (Stanton number), which are of physical interest, are exhibited in tabular form.
文摘Heat diffusion across a non-local quasi-stochastic magnetic field in tokamak plasma is numerically studied. The perturbed magnetic field is found to be a key factor in influencing effective radial heat conductivity whether the magnetic field is stochastic or not. Being different from previous work, a non-local perturbed magnetic field is used. Analytical results and numerical simulation results are compared between the conditions with a full and a quasi-perturbed stochastic field. The analytical results are found to be still consistent with numerical simulation results when the perturbed field is quasi-stochastic.
文摘Expansion is an important operation in the hot extrusion production line of seamless steel tubes, which is to produce proper hollow billets for extrusion. The billet goes through induction heating before expanded to acquire a proper temperature. In this study, the effects of three types of inhomogeneous temperature fields on 321 stainless tubes during the expansion process were simulated. The results have indicated that it was an optimum temperature filed for expansion, where the temperature varied linearly along radial direction and the temperature was lower on the inner surface. This temperature field is beneficial to improving the stability of expansion and ensuring dimensional accuracy and increasing the utilization rate of tubular billet material.
文摘In this paper, the Kirchhoffs transformation is popularized to the nonlinear heat conduction problem which the heat conductivity can be expressd as a multinomial of temperature firstly, the boundary condition of heat conduction problem is determined by analytics.Secondly, the incubation peroid superposition and the linear combination law is employed to simulate the transient phasses transformation in the process of heat treatment of materials. That the begin time of phase transformation, the type of phase transformation and the amount of phase constitution is determined simply.Finally, the three-dimension Dual Reciprocity Boundary Element Method is usedto analysis the total process of various heat treatment of component, the results of numerical calculation of examples show that the method provided in this paper is effectivce.
文摘Long-term research has been done on the unstable behaviors and electron emission from microprotrusions, but the whole reason is still not clear. It is difficult to study instabilities experimentally since vacuum breakdown can happen. In this model, we show the factors that lead to thermal instability during field emission. After the Nottingham flux inversion, we see a considerable rise in temperature above a threshold electric field, followed by a thermal runaway. Cathode spots experience unexpected thermal defects and breakdowns, which is a phenomenon known as the Nottingham Inversion Instability. Although the idea of micro protrusions is frequently used in modeling studies, this study concentrates on the thermal effects during field emission from a planar cathode without taking the existence of such protrusions into account. The study reveals how Nottingham’s heating effect changes from heating to cooling. In our study, we have investigated the interaction between Nottingham, Joule heating, and effective work function. The results also imply that faster reaching critical temperature is associated with larger maximum beta values. These discoveries have significance for the design and improvement of high-voltage systems and help to understand vacuum breakdown. The possibility of cathode spot ignition and subsequent vacuum breakdown is predicted by our model, which would make it possible to create a self-consistent model for that.
基金Project supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of China(Grant No.51621062)
文摘The uniformity principle of temperature difference field is very useful in heat exchanger analyses and optimizations.In this paper, we analyze some other heat transfer optimization problems in the thermal management system of spacecrafts,including the cooling of thermal components, the one-stream series-wound heat exchanger network, the volume-to-point heat conduction problem, and the radiative heat transfer optimization problem, and have found that the uniformity principle of temperature difference field also holds. When the design objectives under the given constraints are achieved, the distributions of the temperature difference fields are uniform. The principle reflects the characteristic of the distribution of potential in the heat transfer optimization problems. It is also shown that the principle is consistent with the entransy theory. Therefore, although the principle is intuitive and phenomenological, the entransy theory can be the physical basis of the principle.
文摘Because of the great importance of thermal instability in nature, in chemical processes, in separation processes, in industrial applications as well as in geophysical and astrophysical engineering, the effect of thermal diffusion on the combined MHD heat transfer in an unsteady flow past a continuously moving semi-infinite vertical porous plate which is subjected to constant heat has been investigated numerically under the action of strong applied magnetic field taking into account the induced magnetic field. This study is performed for cooling problem with lighter and heavier particles. Numerical solutions for the velocity field, induced magnetic field as well as temperature distribution are obtained for associated parameters using the explicit finite difference method. The obtained results are also discussed with the help of graphs to observe effects of various parameters on the above mentioned quantities.