The refrigerant mixture of ethanol aqueous was applied to the parallel type pulsating heat pipe (PHP). The operation characteristics of the PHP were analyzed by means of experiment and nonlinear chaotic theory. Moreov...The refrigerant mixture of ethanol aqueous was applied to the parallel type pulsating heat pipe (PHP). The operation characteristics of the PHP were analyzed by means of experiment and nonlinear chaotic theory. Moreover, the relationship between the running state and attractor was described. The results indicate that starting power, stable running power and dry burning transition power are about 64.08 W, 148.68 W and 234.0 W respectively. The cycle and amplitude of PHP initially decrease and then increase with the increasing power. However, the data are welldistributed in a certain range. The running state is in agreement with the attractors, and the changing process for attractors is as follows: the attractors first disperse in the whole phase space, then present mass status, and finally show band distribution.展开更多
Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations...Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effec- tiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.展开更多
基金Supported by Tianjin Science and Technology Development Strategy Research Program(No.06YFGZGX18300)
文摘The refrigerant mixture of ethanol aqueous was applied to the parallel type pulsating heat pipe (PHP). The operation characteristics of the PHP were analyzed by means of experiment and nonlinear chaotic theory. Moreover, the relationship between the running state and attractor was described. The results indicate that starting power, stable running power and dry burning transition power are about 64.08 W, 148.68 W and 234.0 W respectively. The cycle and amplitude of PHP initially decrease and then increase with the increasing power. However, the data are welldistributed in a certain range. The running state is in agreement with the attractors, and the changing process for attractors is as follows: the attractors first disperse in the whole phase space, then present mass status, and finally show band distribution.
文摘Separate type heat pipe heat exchangers are often used for large-scale heat exchanging. The arrangement of such a heat exchanger conveniently allows heat input to and output from the heat exchanger at remote locations. The traditional method of designing an ordinary HPHE (heat pipe heat exchanger) is commonly applied in the separate type exchanger design, but the calculations have to be carried out separately, which makes it very complicated. In this work, the ε-NTU (effectiveness-Number of Transfer Units) method was applied for optimization analysis of single- or multi-level separate type heat pipe heat exchangers. An optimizing formula for single-level separate type heat pipe heat exchangers was obtained. The optimizing principles of effec- tiveness-NTU and heat transfer rate by the equal distribution method for multi-level separate type heat pipe heat exchanger are presented. The design of separate type heat pipe heat exchangers by the optimizing method is more convenient and faster than by the traditional method.