期刊文献+
共找到12,765篇文章
< 1 2 250 >
每页显示 20 50 100
Mixed convection flow in vertical channel with boundary conditions of third kind in presence of heat source/sink 被引量:1
1
作者 J.C.UMAVATHI J.PRATHAP KUMAR JAWERIYA SULTANA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第8期1015-1034,共20页
The effects of viscous dissipation and heat source/sink on fully developed mixed convection for the laminar flow in a parallel-plate vertical channel are investigated. The plate exchanges heat with an external fluid. ... The effects of viscous dissipation and heat source/sink on fully developed mixed convection for the laminar flow in a parallel-plate vertical channel are investigated. The plate exchanges heat with an external fluid. Both conditions of equal and different reference temperatures of the external fluid are considered. First, the simple cases of the negligible Brinkman number or the negligible Grashof number are solved analytically. Then, the combined effects of buoyancy forces and viscous dissipation in the presence of heat source/sink are analyzed by a perturbation series method valid for small values of the perturbation parameter. To relax the conditions on the perturbation parameter, the velocity and temperature fields are solved by using the Runge-Kutta fourth-order method with the shooting technique. The velocity, temperature, skin friction, and Nusselt num- bers at the plates are discussed numerically and presented through graphs. 展开更多
关键词 mixed convection viscous fluid perturbation method Runge-Kuttashooting method heat source/sink
下载PDF
A Comparative Study of Williamson Hybrid Nanofluid Flow Consisting of Cu, GaN, and Al2O3 Nanoparticles in Ethylene Glycol over a Stretching Sheet with Suction/Injection and Heat Source/Sink
2
作者 Mamidala Jyotshna Vadlakonda Dhanalaxmi 《Journal of Applied Mathematics and Physics》 2022年第12期3864-3897,共34页
Several new techniques in the field of heat transfer in fluids have opened new avenues for studying the heat transfer effects in nanofluids and thermodynamic flow parameters, leading to novel applications. There have ... Several new techniques in the field of heat transfer in fluids have opened new avenues for studying the heat transfer effects in nanofluids and thermodynamic flow parameters, leading to novel applications. There have been studies on nanofluids, including metal, ceramic and magnetic nanoparticles mixed with base fluids such as Water, Kerosene, and Ethylene glycol. However, research on fluids employing semiconductor nanoparticles as supplements to base fluids to generate nanofluids and hybrid nanofluids is limited. For the investigation, Gallium nitrite, a binary semiconductor with excellent heat convection, is together with Cu metal nanoparticles and Al<sub>2</sub>O<sub>3</sub> ceramic nanoparticles separately in the base fluid Ethylene glycol (EG) to form hybrid nanofluids. The effects of convective boundary conditions, thermal radiation, heat source/sink, suction/injection, and activation energy on three-dimensional Williamson MHD hybrid nanofluid flow of Cu + GaN + EG, Al<sub>2</sub>O<sub>3</sub> + GaN + EG, and Cu + Al<sub>2</sub>O<sub>3</sub> + EG are investigated on a stretched sheet with porosity. A similarity transformation is performed on the governing equations to transform them into dimensionless ordinary differential equations ODEs. Numerical analysis is carried out in MATLAB utilizing bvp5c and the shooting technique. The variations of velocity, temperature, and concentration profiles as a function of different physical effects are presented graphically with dimensionless parameters and explained the variations scientifically. As varied with different parameters, the values of the Skin-friction coefficient, Nusselt number, and Sherwood number are mentioned in the table. 展开更多
关键词 Williamson Hybrid Nanofluid Gallium Nitride heat Transfer heat source/sink Suction/Injection Solid Volume Fraction
下载PDF
Convection of Maxwell fluid over stretching porous surface with heat source/sink in presence of nanoparticles:Lie group analysis 被引量:1
3
作者 Limei CAO Xinhui SI Liancun ZHENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第4期433-442,共10页
The convection of a Maxwell fluid over a stretching porous surface with a heat source/sink in the presence of nanoparticles is investigated. The Lie symmetry group transformations are used to convert the boundary laye... The convection of a Maxwell fluid over a stretching porous surface with a heat source/sink in the presence of nanoparticles is investigated. The Lie symmetry group transformations are used to convert the boundary layer equations into coupled nonlinear ordinary differential equations. The ordinary differential equations are solved numerically by the Bvp4c with MATLAB, which is a collocation method equivalent to the fourth-order mono-implicit Runge-Kutta method. Furthermore, more attention is paid to the effects of the physical parameters, especially the parameters related to nanoparticles, on the temperature and concentration distributions with consideration of permeability and the heat source/sink. 展开更多
关键词 Lie group Maxwell fluid porous stretching surface heat sink or source
下载PDF
Effects of Radiations and Heat Source/Sink on a Casson Fluid Flow over Nonlinear Stretching Sheet 被引量:1
4
作者 Chenna Sumalatha Shankar Bandari 《World Journal of Mechanics》 2015年第12期257-265,共9页
The present study deals with the flow over a nonlinearly stretching sheet of Casson fluid with the effects of radiation and heat source/sink. The Casson fluid model is used to characterize the non-Newtonian fluid beha... The present study deals with the flow over a nonlinearly stretching sheet of Casson fluid with the effects of radiation and heat source/sink. The Casson fluid model is used to characterize the non-Newtonian fluid behaviour. With the help of justified similarity transformations the governing equations were reduced to couple nonlinear ordinary differential equations. The effective numerical technique Keller Box method is used to solve these equations. The variations in velocity, temperature profiles were presented with the various values of nonlinear stretching parameter n and Casson parameter β. The nature of Skinfriction and Local nusselt number has presented. Effects of radiation and heat source/sink on temperature profiles have been discussed. 展开更多
关键词 NONLINEAR STRETCHING Sheet Casson Fluid Keller BOX Method Radiation heat source/sink
下载PDF
Boundary Layer Flow of an Unsteady Dusty Fluid and Heat Transfer Over a Stretching Sheet with Non-Uniform Heat Source/Sink 被引量:1
5
作者 Bijjanal J. Gireesha Govinakovi S. Roopa Channabasappa S. Bagewadi 《Engineering(科研)》 2011年第7期726-735,共10页
An analysis has been carried out to study the effect of hydrodynamic laminar boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface in the presence of non-uniform heat source/sink. ... An analysis has been carried out to study the effect of hydrodynamic laminar boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface in the presence of non-uniform heat source/sink. Heat transfer characteristics are examined for two different kinds of boundary conditions, namely 1) variable wall temperature and 2) variable heat flux. The governing partial differential equations are transformed to system of ordinary differential equations. These equations are solved numerically by applying RKF-45 method. The effects of various physical parameters such as magnetic parameter, dust interaction parameter, number density, Prandtl number, Eckert number, heat source/sink parameter and unsteadiness parameter on velocity and temperature profiles are studied. 展开更多
关键词 UNSTEADY Flow heat Transfer Boundary Layer Flow Stretching Surface DUSTY FLUID Fluid-Particle Interaction Parameter and NON-UNIFORM heat source/sink
下载PDF
Thermal Radiation, Heat Source/Sink and Work Done by Deformation Impacts on MHD Viscoelastic Fluid over a Nonlinear Stretching Sheet 被引量:1
6
作者 F. M. Hady R. A. Mohamed Hillal M. ElShehabey 《World Journal of Mechanics》 2013年第4期203-214,共12页
This work is focused on the effects of heat source/sink, viscous dissipation, radiation and work done by deformation on flow and heat transfer of a viscoelastic fluid over a nonlinear stretching sheet. The similarity ... This work is focused on the effects of heat source/sink, viscous dissipation, radiation and work done by deformation on flow and heat transfer of a viscoelastic fluid over a nonlinear stretching sheet. The similarity transformations have been used to convert the governing partial differential equations into a set of nonlinear ordinary differential equations. These equations are then solved numerically using a very efficient implicit finite difference method. Favorable comparison with previously published work is performed and it is found to be in excellent agreement. The results of this parametric study are shown in several plots and tables and the physical aspects of the problem are highlighted and discussed. 展开更多
关键词 Flow and heat Transfer Second Grade Fluid NONLINEAR Stretching Sheet heat source Radiation
下载PDF
Effect of Heat Source/Sink on Free Convective Flow of a Polar Fluid between Vertical Concentric Annuli
7
作者 Arun Kumar Singh Ashok Kumar Singh 《Journal of Applied Mathematics and Physics》 2017年第9期1750-1762,共13页
The purpose of this paper is to find the effect of heat source/sink parameter on free convective flow of a polar fluid in open-ended vertical concentric annuli. Exact solutions of the non-dimensional differential equa... The purpose of this paper is to find the effect of heat source/sink parameter on free convective flow of a polar fluid in open-ended vertical concentric annuli. Exact solutions of the non-dimensional differential equations describing the flow model have been obtained one by one for two different cases of source and sink. To observe the effect of the physical parameters such as source/sink and vertex viscosity, the numerical results of the velocity and microrotational velocity are finally shown on the graphs. 展开更多
关键词 POLAR FLUID Free Convection Isothermal and Constant heat Flux Cases Temperature Dependent heat source/sink VERTICAL Annuli
下载PDF
Chemically Radiative MHD Flow of a Micropolar Nanofluid over a Stretching/ Shrinking Sheet with a Heat Source or Sink
8
作者 Parakapali Roja Shaik Mohammed Ibrahim +1 位作者 Thummala Sankar Reddy Giulio Lorenzini 《Fluid Dynamics & Materials Processing》 EI 2024年第2期257-274,共18页
This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into accoun... This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into account.A similarity transformation is used to reduce the system of governing coupled non-linear partial differ-ential equations(PDEs),which account for the transport of mass,momentum,angular momentum,energy and species,to a set of non-linear ordinary differential equations(ODEs).The Runge-Kutta method along with shoot-ing method is used to solve them.The impact of several parameters is evaluated.It is shown that the micro-rota-tional velocity of thefluid rises with the micropolar factor.Moreover,the radiation parameter can have a remarkable influence on theflow and temperature profiles and on the angular momentum distribution. 展开更多
关键词 Chemical(first order homogeneous)reaction MAGNETOHYDRODYNAMICS MICROPOLAR NANOFLUID stretching/shrinking sheet heat source
下载PDF
Experimental Study on the Performance of ORC System Based on Ultra-Low Temperature Heat Sources
9
作者 Tianyu Zhou Liang Hao +2 位作者 Xin Xu Meng Si Lian Zhang 《Energy Engineering》 EI 2024年第1期145-168,共24页
This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.Th... This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.The simulated heat source temperature(SHST)in this work was set from 39.51°C to 48.60°C by the simulated heat source module.The influence of load percentage of simulated heat source(LPSHS)between 50%and 70%,the rotary valve opening(RVO)between 20%and 100%,the resistive load between 36Ωand 180Ωor the no-load of the generator,as well as the autumn and winter ambient temperature on the system performance were studied.The results showed that the stability of the system was promoted when the generator had a resistive load.The power generation(PG)and generator speed(GS)of the system in autumn were better than in winter,but the expander pressure ratio(EPR)was lower than in winter.Keep RVO unchanged,the SHST,the mass flow rate(MFR)of the working medium,GS,and the PG of the system increased with the increasing of LPSHS for different generator resistance load values.When the RVO was 60%,LPSHS was 70%,the SHST was 44.15°C and the resistive load was 72Ω,the highest PG reached 15.11 W.Finally,a simulation formula was obtained for LPSHS,resistance load,and PG,and its correlation coefficient was between 0.9818 and 0.9901.The formula can accurately predict the PG.The experimental results showed that the standard deviation between the experimental and simulated values was below 0.0792,and the relative error was within±5%. 展开更多
关键词 ORC load percentage of simulated heat source resistive load rotary valve opening power generation
下载PDF
Influence of temperature dependent heat source/sink on transient MHD free convective flow in an infinite rigid impermeable vertical cylinder with chemical reaction
10
作者 Naveen Dwivedi Ashok Kumar Singh Nirmal C.Sacheti 《Propulsion and Power Research》 SCIE 2023年第4期568-583,共16页
It is increasingly apparent that the inclusion of mass transfer aspects,together with certain thermal conditions,in the momentum and energy equations governing MHD flows leads to a numbers of real life applications.Ke... It is increasingly apparent that the inclusion of mass transfer aspects,together with certain thermal conditions,in the momentum and energy equations governing MHD flows leads to a numbers of real life applications.Keeping this in view,we have attempted an exact analysis of heat and mass transfer aspects in transient hydromagnetic free convective flow of an incompressible viscous fluid through a vertical pipe under an externally applied magnetic field,assuming presence of chemical reaction and heat source/sink.The governing PDEs,which simplify to a set of 3 linear ODEs in the physical set up considered here,have been solved using Laplace transform technique,with solutions for key physical variables presented in the term of Bessel and modified Bessel functions.The influence of governing non-dimensional parameters,namely,Hartmann number,Schmidt number,source/sink parameter,Prandtl number and chemical reaction parameter,has been illustrated on the developing velocity and some concentration profiles.Some important quantities of engineering interest-surface skin friction and volumetric flow rates-have been computed too and analysed.Some notable finding worth mentioning are:(a)heat source presence causes higher fluid velocity as compared to the heat sink;(b)all important surface shear stress can be suitably controlled,among others,by chemical reaction parameter and Schmidt number.The key challenge of this study has been to obtain exact closed-form solutions of the field equations,including cumbersome Laplace inverses.This study finds innovative applications in the emerging fields such as magnetic materials processing,chemical processes,solar energy systems,etc. 展开更多
关键词 Circular cylinder Hydromagnetic transient flow Chemical reaction source/sink Free convection
原文传递
Atmospheric heat source/sink dataset over the Tibetan Plateau based on satellite and routine meteorological observations 被引量:8
11
作者 Anmin Duan Senfeng Liu +2 位作者 Yu Zhao Kailun Gao Wenting Hu 《Big Earth Data》 EI 2018年第2期179-189,共11页
The Tibetan Plateau(TP),acting as a large elevated land surface and atmospheric heat source during spring and summer,has a substantial impact on regional and global weather and climate.To explore the multi-scale tempo... The Tibetan Plateau(TP),acting as a large elevated land surface and atmospheric heat source during spring and summer,has a substantial impact on regional and global weather and climate.To explore the multi-scale temporal variation in the thermal forcing effect of the TP,here we calculated the surface sensible heat and latent heat release based on 6-h routine observations at 80(32)meteorological stations during the period 1979–2016(1960–2016).Meanwhile,in situ air-column net radiation cooling during the period 1984–2015 was derived from satellite data.This new data-set provides continuous,robust,and the longest observational atmospheric heat source/sink data over the third pole,which will be helpful to better understand the spatial-temporal structure and multi-scale variation in TP diabatic heating and its influence on the earth’s climatic system. 展开更多
关键词 Atmospheric heat source/sink DATASET Tibetan Plateau sensible heat latent heat
原文传递
Numerical study of a dissipative micropolar fluid flow past an inclined porous plate with heat source/sink 被引量:2
12
作者 Shamshuddin MD Thirupathi Thumma 《Propulsion and Power Research》 SCIE 2019年第1期56-68,共13页
Micropolar theories present an excellent mechanism for exploring new non-Newtonian materials processing provides a stimulating area for process engineering simulation.Motivated by area for process engineering applicat... Micropolar theories present an excellent mechanism for exploring new non-Newtonian materials processing provides a stimulating area for process engineering simulation.Motivated by area for process engineering applications,the present article presents the scope offinite element method in solving a mathematical model for magnetohydrodynamic,incom-pressible,dissipative and chemically reacting micropolar fluid flow and heat and mass transferthrough a porous medium from an inclined plate with heat sourcelsink has been investigated.For this purpose,the set of governing equations have been reframed and put into adimensionless form under the assumption of low Reynolds number with appropriatedimensionless quantities that can fit into the finite element fommulation.In addition tohighlighting the operational aspects of weighted residual scheme,a detailed investigation hasbeen camied out on the associated flow stnucture,heat and mass transfer.The evolution ofmany multi-physical parameters in these variables is illustrated graphically.Finite elementcode is benchmarked with the results reported in the literature to check the validity andaccuracy under some limiting cases and excellent agreement is seen with published solutionsand results of skin friction coefficient,couple stress coefficient,Nusselt number and Sherwoodnumber for invoked parameter are tabulated which shows that increasing heat sourcelsinkparameter elevates temperature.Chemical reaction parameter reduces velocity and concentra-tion gradients.Sherwood number enhances as chemical reaction parameter increases but reverse phenomena is observed in case of inclination of angle.Furthermore,a gridindependency test has been caried out for different grid sizes which has proven this methodis adequate. 展开更多
关键词 heat source/sink Chemical reaction Inclined porousplate Micropolar fluid Finite elementmethod(FEM)
原文传递
Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over a shrinking sheet with suction/injection 被引量:1
13
作者 Krishnendu Bhattacharyya 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2011年第3期376-384,共9页
In this paper,an investigation is made to study the effects of radiation and heat source/sink on the unsteady boundary layerflow and heat transfer past a shrinking sheet with suction/injection.Theflow is permeated by an... In this paper,an investigation is made to study the effects of radiation and heat source/sink on the unsteady boundary layerflow and heat transfer past a shrinking sheet with suction/injection.Theflow is permeated by an externally applied magneticfield normal to the plane offlow.The self-similar equations correspond-ing to the velocity and temperaturefields are obtained,and then solved numerically byfinite difference method using quasilinearization technique.The study reveals that the momentum boundary layer thickness increases with increasing unsteadiness and decreases with magneticfield.The thermal boundary layer thickness decreases with Prandtl number,radiation parameter and heat sink parameter,but it increases with heat source parameter.Moreover,increasing unsteadiness,magneticfield strength,radiation and heat sink strength boost the heat transfer. 展开更多
关键词 MHD boundary layer unsteadyflow heat transfer thermal radiation heat source/sink shrinking sheet suction/injection
原文传递
Slip flow of micropolar fluid through a permeable wedge due to the effects of chemical reaction and heat source/sink with Hall and ionslip currents:an analytic approach 被引量:1
14
作者 Khilap Singh Alok Kumar Pandey Manoj Kumar 《Propulsion and Power Research》 SCIE 2020年第3期289-303,共15页
This study focuses on the combined impact of heat source/sink and chemical reaction on slip flow of micropolar fluid through a permeable wedge in the existence of Hall and ion-slip currents.The governing highly non-li... This study focuses on the combined impact of heat source/sink and chemical reaction on slip flow of micropolar fluid through a permeable wedge in the existence of Hall and ion-slip currents.The governing highly non-lincar PDEs were altered into a set of non-linear coupled ODEs by using similarity transformations.Differential transformation method(DTM)has been implemented in transformed ODEs equations.The comparison with previous literatures was performed and the data of this study was found to be in accordance with each other.The analytical solutions for skin-friction coefficients(surface drag forces),Nussclt and Sherwood numbers are depicted through graphs and tables.The study of boundary layer flow over a wedge surface plays an imperative role in the field of aerodynamics,heat exchanger,ground water pollution and geothermal system etc. 展开更多
关键词 Chemical reaction Differential transformation method(DTM) Hall current and ion slip heat source/sink Micropolar fluid Slip velocity
原文传递
Heat dissipation enhancement method for finned heat sink for AGV motor driver's IGBT module
15
作者 刘璇 ZHANG Mingchao +2 位作者 LIU Chengwen ZHOU Chuanan LV Xiaoling 《High Technology Letters》 EI CAS 2024年第2期170-178,共9页
With the widespread use of high-power and highly integrated insulated gate bipolar transistor(IGBT),their cooling methods have become challenging.This paper proposes a liquid cooling scheme for heavy-duty automated gu... With the widespread use of high-power and highly integrated insulated gate bipolar transistor(IGBT),their cooling methods have become challenging.This paper proposes a liquid cooling scheme for heavy-duty automated guided vehicle(AGV)motor driver in port environment,and improves heat dissipation by analyzing and optimizing the core component of finned heat sink.Firstly,the temperature distribution of the initial scheme is studied by using Fluent software,and the heat transfer characteristics of the finned heat sink are obtained through numerical analysis.Secondly,an orthogonal test is designed and combined with the response surface methodology to optimize the structural parameters of the finned heat sink,resulting in a 14.57%increase in the heat dissipation effect.Finally,the effectiveness of heat dissipation enhancement is verified.This work provides valuable insights into improving the heat dissipation of IGBT modules and heat sinks,and provides guidance for their future applications. 展开更多
关键词 finned heat sink insulated gate bipolar transistor(IGBT)module heat dissipation orthogonal test response surface methodology
下载PDF
Study of energy-efficient heat resistance and cooling technology for high temperature working face with multiple heat sources in deep mine
16
作者 Hongbin Zhao Shihao Tu +2 位作者 Xun Liu Jieyang Ma Long Tang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第3期92-107,共16页
In the present research,we proposed a scheme to address the issues of severe heat damage,high energy consumption,low cooling system efficiency,and wastage of cold capacity in mines.To elucidate the seasonal variations... In the present research,we proposed a scheme to address the issues of severe heat damage,high energy consumption,low cooling system efficiency,and wastage of cold capacity in mines.To elucidate the seasonal variations of environmental temperature through field measurements,we selected a high-temperature working face in a deep mine as our engineering background.To enhance the heat damage control cability of the working face and minimize unnecessary cooling capac-ity loss,we introduced the multi-dimensional heat hazard prevention and control method called"Heat source barrier and cooling equipment".First,we utilize shotcrete and liquid nitrogen injection to eliminate the heat source and implemented pressure equalization ventilation to disrupt the heat transfer path,thereby creating a heat barrier.Second,we establish divi-sional prediction models for airflow temperature based on the variation patterns obtained through numerical simulation.Third,we devise the location and dynamic control strategy for the cooling equipment based on the prediction models.The results of field application show that the heat resistance and cooling linkage method comply with the safety requirement throughout the entire mining cycle while effectively reducing energy consumption.The ambient temperature is maintained below 30℃,resulting in the energy saving of 10%during the high-temperature period and over 50%during the low-temperature period.These findings serve as a valuable reference for managing heat damage in high-temperature working faces. 展开更多
关键词 High-temperature working face heat source barrier Multiple heat source effect Airflow temperature prediction Dynamic control strategy
下载PDF
Interdecadal Variations of the March Atmospheric Heat Source over the Southeast Asian Low-Latitude Highlands
17
作者 Dayong WEN Jie CAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第9期1584-1596,共13页
Based on the fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts for 1979–2019,we investigated the effects of the circumglobal teleconnection(CGT)on the interdecadal variat... Based on the fifth-generation reanalysis dataset from the European Centre for Medium-Range Weather Forecasts for 1979–2019,we investigated the effects of the circumglobal teleconnection(CGT)on the interdecadal variation of the March atmospheric heat source(AHS)over the Southeast Asian low-latitude highlands(SEALLH).The dominant mode of the March AHS over the SEALLH features a monopole structure with an 8–11-year period.Decadal variations in the AHS make an important contribution to the 11-year low-pass filtered component of the AHS index,whichexplains 54.3%of the total variance.The CGT shows a clear interdecadal variation,which explains 59.3%of the total variance.The March AHS over the SEALLH is significantly related to the CGT on interdecadal timescales.When the CGT is optimally excited by a significant cyclonic vorticity source near northern Africa(i.e.,in its positive phase),the SEALLH is dominated by anomalous southerly winds and ascending motions on the east of the anomalous cyclone.The enhanced advection and upward transfer result in a high-enthalpy air mass that converges into and condenses over the SEALLH,leading to a largerthan-average March AHS over this region.The key physical processes revealed by this diagnostic analysis are supported by numerical experiments. 展开更多
关键词 interdecadal variation atmospheric heat source circumglobal teleconnection low-latitude highlands Rossby wave source
下载PDF
Modeling and Optimization of Solar Collector Design for the Improvement of Solar-Air Source Heat Pump Building Heating System
18
作者 Jiarui Wu Yuzhen Kang Junxiao Feng 《Energy Engineering》 EI 2023年第12期2783-2802,共20页
To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an impr... To enhance system stability,solar collectors have been integrated with air-source heat pumps.This integration facilitates the concurrent utilization of solar and air as energy sources for the system,leading to an improvement in the system’s heat generation coefficient,overall efficiency,and stability.In this study,we focus on a residential building located in Lhasa as the target for heating purposes.Initially,we simulate and analyze a solar-air source heat pump combined heating system.Subsequently,while ensuring the system meets user requirements,we examine the influence of solar collector installation angles and collector area on the performance of the solar-air source heat pump dual heating system.Through this analysis,we determine the optimal installation angle and collector area to optimize system performance. 展开更多
关键词 Solar energy air source heat pump optimization model solar-air heat pump heating system
下载PDF
Research on Operation Optimization of Heating System Based on Electric Storage Coupled Solar Energy and Air Source Heat Pump
19
作者 Jingxiao Han Chuanzhao Zhang +5 位作者 LuWang ZengjunChang Qing Zhao Ying Shi JiaruiWu Xiangfei Kong 《Energy Engineering》 EI 2023年第9期1991-2011,共21页
For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving e... For heating systems based on electricity storage coupled with solar energy and an air source heat pump(ECSA),choosing the appropriate combination of heat sources according to local conditions is the key to improving economic efficiency.In this paper,four cities in three climatic regions in China were selected,namely Nanjing in the hot summer and cold winter region,Tianjin in the cold region,Shenyang and Harbin in the severe cold winter region.The levelized cost of heat(LCOH)was used as the economic evaluation index,and the energy consumption and emissions of different pollutants were analyzed.TRNSYS software was used to simulate and analyze the system performance.The Hooke-Jeeves optimization algorithm and GenOpt software were used to optimize the system parameters.The results showed that ECSA systemhad an excellent operation effect in cold region and hot summer and cold winter region.Compared with ECS system,the systemenergy consumption,and the emission of different pollutants of ECSA system can be reduced by a maximum of 1.37 times.In cold region,the initial investment in an air source heat pump is higher due to the lower ambient temperature,resulting in an increase in the LOCH value of ECSA system.After the LOCH value of ECSA system in each region was optimized,the heating cost of the system was reduced,but also resulted in an increase in energy consumption and the emission of different pollutant gases. 展开更多
关键词 Electric heat storage solar energy air source heat pump multi-objective optimization method LOCH
下载PDF
Diagnostic Study of Apparent Heat Sources and Moisture Sinks in the South China Sea and its Adjacent Areas during the Onset of 1998 SCS Monsoon 被引量:7
20
作者 王世玉 钱永甫 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第2期285-298,共14页
The apparent heat sources (?Q1 ?) and moisture sinks (?Q2 ?) are calculated based on the reanalyzed data of the South China Sea Monsoon Experiment (SCSMEX) from May 1 to August 31, 1998. It is found that the formation... The apparent heat sources (?Q1 ?) and moisture sinks (?Q2 ?) are calculated based on the reanalyzed data of the South China Sea Monsoon Experiment (SCSMEX) from May 1 to August 31, 1998. It is found that the formation and distribution of the atmospheric heat sources are important for the monsoon onset. The earlier onset of the SCS monsoon is the result of enduring atmospheric heating in the Indo–China Peninsula and South China areas. The atmospheric heating firstly appears in the Indo–China Peninsula area and the sensible heat is the major one. The 30–50 day periodic oscillation of atmospheric heat sources between the SCS area and the western Pacific warm pool has a reverse phase distribution before the middle of July and the low frequency oscillation of heat sources in SCS area has an obvious longitudinal propagation. The 30–50 day low frequency oscillation has vital modificatory effects on the summer monsoon evolution during 1998. Key words Apparent heat sources - Apparent moisture sinks - The South China Sea monsoon - Diagnostic Study Sponsored by the National Key Project of Fundamental Research “ SCSMEX” and the Research Fund for the Doctoral Program of Higher Education: “ Study of the Air-sea Interaction in the SCS Monsoon Region”. 展开更多
关键词 Apparent heat sources Apparent moisture sinks The South China Sea monsoon Diagnostic Study
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部