期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
Variational Approach to 2D and 3D Heat Conduction Modeling
1
作者 Slavko Đurić Ivan Aranđelović Milan Milotić 《Journal of Applied Mathematics and Physics》 2024年第4期1383-1400,共18页
The paper proposes an approximate solution to the classical (parabolic) multidimensional 2D and 3D heat conduction equation for a 5 × 5 cm aluminium plate and a 5 × 5 × 5 cm aluminum cube. An approximat... The paper proposes an approximate solution to the classical (parabolic) multidimensional 2D and 3D heat conduction equation for a 5 × 5 cm aluminium plate and a 5 × 5 × 5 cm aluminum cube. An approximate solution of the generalized (hyperbolic) 2D and 3D equation for the considered plate and cube is also proposed. Approximate solutions were obtained by applying calculus of variations and Euler-Lagrange equations. In order to verify the correctness of the proposed approximate solutions, they were compared with the exact solutions of parabolic and hyperbolic equations. The paper also presents the research on the influence of time parameters τ as well as the relaxation times τ ∗ to the variation of the profile of the temperature field for the considered aluminum plate and cube. 展开更多
关键词 Classical Equation of heat conduction Generalized Equation of heat conduction Calculus of Variations Approximate Solution
下载PDF
Galerkin-based quasi-smooth manifold element(QSME)method for anisotropic heat conduction problems in composites with complex geometry
2
作者 Pan WANG Xiangcheng HAN +2 位作者 Weibin WEN Baolin WANG Jun LIANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期137-154,共18页
The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element ... The accurate and efficient analysis of anisotropic heat conduction problems in complex composites is crucial for structural design and performance evaluation. Traditional numerical methods, such as the finite element method(FEM), often face a trade-off between calculation accuracy and efficiency. In this paper, we propose a quasi-smooth manifold element(QSME) method to address this challenge, and provide the accurate and efficient analysis of two-dimensional(2D) anisotropic heat conduction problems in composites with complex geometry. The QSME approach achieves high calculation precision by a high-order local approximation that ensures the first-order derivative continuity.The results demonstrate that the QSME method is robust and stable, offering both high accuracy and efficiency in the heat conduction analysis. With the same degrees of freedom(DOFs), the QSME method can achieve at least an order of magnitude higher calculation accuracy than the traditional FEM. Additionally, under the same level of calculation error, the QSME method requires 10 times fewer DOFs than the traditional FEM. The versatility of the proposed QSME method extends beyond anisotropic heat conduction problems in complex composites. The proposed QSME method can also be applied to other problems, including fluid flows, mechanical analyses, and other multi-field coupled problems, providing accurate and efficient numerical simulations. 展开更多
关键词 anisotropic heat conduction quasi-smooth manifold element(QSME) composite with complex geometry numerical simulation finite element method(FEM)
下载PDF
Variational Approach to Heat Conduction Modeling
3
作者 Slavko Đurić Ivan Aranđelović Milan Milotić 《Journal of Applied Mathematics and Physics》 2024年第1期234-248,共15页
It is known that Fourier’s heat equation, which is parabolic, implies an infinite velocity propagation, or, in other words, that the mechanism of heat conduction is established instantaneously under all conditions. T... It is known that Fourier’s heat equation, which is parabolic, implies an infinite velocity propagation, or, in other words, that the mechanism of heat conduction is established instantaneously under all conditions. This is unacceptable on physical grounds in spite of the fact that Fourier’s law agrees well with experiment. However, discrepancies are likely to occur when extremely short distances or extremely short time intervals are considered, as they must in some modern problems of aero-thermodynamics. Cattaneo and independently Vernotte proved that such process can be described by Heaviside’s telegraph equation. This paper shows that this fact can be derived using calculus of variations, by application of the Euler-Lagrange equation. So, we proved that the equation of heat conduction with finite velocity propagation of the thermal disturbance can be obtained as a solution to one variational problem. 展开更多
关键词 Telegraph Equation heat Equation heat conduction Calculus of Variations
下载PDF
Lightweight diamond/Cu interface tuning for outstanding heat conduction 被引量:1
4
作者 Wenjie Dou Congxu Zhu +6 位作者 Xiwang Wu Xun Yang Wenjun Fa Yange Zhang Junfeng Tong Guangshan Zhu Zhi Zheng 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期229-240,共12页
With rapid developments in the field of very large-scale integrated circuits,heat dissipation has emerged as a significant factor that restricts the high-density integration of chips.Due to their high thermal conducti... With rapid developments in the field of very large-scale integrated circuits,heat dissipation has emerged as a significant factor that restricts the high-density integration of chips.Due to their high thermal conductivity and low thermal expansion coefficient,diamond/Cu composites have attracted considerable attention as a promising thermal management material.In this study,a surface tungsten carbide gradient layer coating of diamond particles has been realized using comprehensive magnetron sputtering technology and a heat treatment process.Diamond/Cu composites were prepared using high-temperature and high-pressure technology.The results show that,by adjusting the heat treatment process,tungsten carbide and di-tungsten carbide are generated by an in situ reaction at the tungsten–diamond interface,and W–WC–W_(2)C gradient layer-coated diamond particles were obtained.The diamond/Cu composites were sintered by high-temperature and high-pressure technology,and the density of surface-modified diamond/Cu composites was less than 4 g cm^(-3).The W–WC–W_(2)C@diamond/Cu composites have a thermal diffusivity as high as 331 mm^(2)s^(-1),and their thermal expansion coefficient is as low as 1.76×10^(-6)K^(-1).The interface coherent structure of the gradient layer-coated diamond/copper composite can effectively improve the interface heat transport efficiency. 展开更多
关键词 coherent interface diamond composite heat conduction surface modification
下载PDF
Investigation of radial heat conduction with 1D self-consistent model in helicon plasmas
5
作者 田滨 Mario MERINO +2 位作者 万杰 胡远 曹勇 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第1期28-42,共15页
A 1D radially self-consistent model in helicon plasmas has been established to investigate the influence of radial heat conduction on plasma transport and wave propagation.Two kinds of 1D radial fluid models,with and ... A 1D radially self-consistent model in helicon plasmas has been established to investigate the influence of radial heat conduction on plasma transport and wave propagation.Two kinds of 1D radial fluid models,with and without considering heat conduction,have been developed to couple the 1D plasma-wave interaction model,and self-consistent solutions have been obtained.It is concluded that in the low magnetic field range the radial heat conduction plays a moderate role in the transport of helicon plasmas and the importance depends on the application of the helicon source.It influences the local energy balance leading to enhancement of the electron temperature in the bulk region and a decrease in plasma density.The power deposition in the plasma is mainly balanced by collisional processes and axial diffusion,whereas it is compensated by heat conduction in the bulk region and consumed near the boundary.The role of radial heat conduction in the large magnetic field regime becomes negligible and the two fluid models show consistency.The local power balance,especially near the wall,is improved when conductive heat is taken into account. 展开更多
关键词 helicon discharge heat conduction model coupling plasma transport
下载PDF
A Novel Localized Meshless Method for Solving Transient Heat Conduction Problems in Complicated Domains
6
作者 Chengxin Zhang Chao Wang +1 位作者 Shouhai Chen Fajie Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2407-2424,共18页
This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by... This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method(LKM)with the dual reciprocity method(DRM).Firstly,the temporal derivative is discretized by a finite difference scheme,and thus the governing equation of transient heat transfer is transformed into a non-homogeneous modified Helmholtz equation.Secondly,the solution of the non-homogeneous modified Helmholtz equation is decomposed into a particular solution and a homogeneous solution.And then,the DRM and LKM are used to solve the particular solution of the non-homogeneous equation and the homogeneous solution of the modified Helmholtz equation,respectively.The LKM is a recently proposed local radial basis function collocationmethod with themerits of being simple,accurate,and free ofmesh and integration.Compared with the traditional domain-type and boundary-type schemes,the present coupling algorithm could be treated as a really good alternative for the analysis of transient heat conduction on high-dimensional and complicated domains.Numerical experiments,including two-and three-dimensional heat transfer models,demonstrated the effectiveness and accuracy of the new methodology. 展开更多
关键词 Local knot method transient heat conduction dual reciprocity method meshless method
下载PDF
Research on the heat conduction mechanism of induction brazecoating
7
作者 龙伟民 王梦凡 +4 位作者 刘大双 张雷 张冠星 王鑫华 王水庆 《China Welding》 CAS 2023年第1期1-6,共6页
Induction brazecoating technology is an important means to improve the surface properties of materials.In this paper,copper plate and corundum are selected as substrates for induction brazecoating respectively.The tem... Induction brazecoating technology is an important means to improve the surface properties of materials.In this paper,copper plate and corundum are selected as substrates for induction brazecoating respectively.The temperature variation of powder and paste coating is systematically studied,and the heat conduction mode and path in the brazecoating process are analyzed.The results show that rise of the coating temperature mainly depends on the heat absorption from the substrate.The liquid-solid interface conducts heat violently and advances step by step,which promotes the melting spread of metal filler metal.The powdery brazecoating material is in a free state,and there is a gas insulation film between the powder particles and the diamond,making it difficult for substrate to conduct heat to the coating.The binder not only assists forming,shell making and oxygen isolation,but also plays an important role during melting. 展开更多
关键词 induction brazing heat conduction eddy heat generation
下载PDF
HYBRID FEM WITH FUNDAMENTAL SOLUTIONS AS TRIAL FUNCTIONS FOR HEAT CONDUCTION SIMULATION 被引量:10
8
作者 Hui Wang Qing-Hua Qin 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第5期487-498,共12页
A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problem... A new type of hybrid finite element formulation with fundamental solutions as internal interpolation functions, named as HFS-FEM, is presented in this paper and used for solving two dimensional heat conduction problems in single and multi-layer materials. In the proposed approach, a new variational functional is firstly constructed for the proposed HFS-FE model and the related existence of extremum is presented. Then, the assumed internal potential field constructed by the linear combination of fundamental solutions at points outside the elemental domain under consideration is used as the internal interpolation function, which analytically satisfies the governing equation within each element. As a result, the domain integrals in the variational functional formulation can be converted into the boundary integrals which can significantly simplify the calculation of the element stiffness matrix. The independent frame field is also introduced to guarantee the inter-element continuity and the stationary condition of the new variational functional is used to obtain the final stiffness equations. The proposed method inherits the advantages of the hybrid Trefftz finite element method (HT-FEM) over the conventional finite element method (FEM) and boundary element method (BEM), and avoids the difficulty in selecting appropriate terms of T-complete functions used in HT-FEM, as the fundamental solutions contain usually one term only, rather than a series containing infinitely many terms. Further, the fundamental solutions of a problem are, in general, easier to derive than the T-complete functions of that problem. Finally, several examples are presented to assess the performance of the proposed method, and the obtained numerical results show good numerical accuracy and remarkable insensitivity to mesh distortion. 展开更多
关键词 hybrid FEM fundamental solution variational functional heat conduction
下载PDF
Solution of an Inverse Problem of Heat Conduction of 45 Steel with Martensite Phase Transformation in High Pressure during Gas Quenching 被引量:10
9
作者 Heming CHENG, Tianchun HE and Jianbin XIEDepartment of Engineering Mechanics, Kunming University of Science and Technology, Kunming 650093, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第4期372-374,共3页
In order to simulate thermal strains, thermal stresses, residual stresses and microstructure of the steel during gas quenching by means of the numerical method, it is necessary to obtain an accurate boundary condition... In order to simulate thermal strains, thermal stresses, residual stresses and microstructure of the steel during gas quenching by means of the numerical method, it is necessary to obtain an accurate boundary condition of temperature field. The surface heat transfer coefficient is a key parameter. The explicit finite difference method, nonlinear estimation method and the experimental relation between temperature and time during gas quenching have been used to solve the inverse problem of heat conduction. The relationship between surface temperature and surface heat transfer coefficient of a cylinder has been given. The nonlinear surface heat transfer coefficients include the coupled effects between martensitic phase transformation and temperature. 展开更多
关键词 45 steel Phase transformation heat conduction
下载PDF
Fast precise integration method for hyperbolic heat conduction problems 被引量:5
10
作者 吴峰 高强 钟万勰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期791-800,共10页
A fast precise integration method is developed for the time integral of the hyperbolic heat conduction problem. The wave nature of heat transfer is used to analyze the structure of the matrix exponential, leading to t... A fast precise integration method is developed for the time integral of the hyperbolic heat conduction problem. The wave nature of heat transfer is used to analyze the structure of the matrix exponential, leading to the fact that the matrix exponential is sparse. The presented method employs the sparsity of the matrix exponential to improve the original precise integration method. The merits are that the proposed method is suitable for large hyperbolic heat equations and inherits the accuracy of the original version and the good computational efficiency, which are verified by two numerical examples. 展开更多
关键词 hyperbolic heat conduction sparse matrix precise integration method matrix exponential fast algorithm
下载PDF
Fuzzy finite difference method for heat conduction analysis with uncertain parameters 被引量:3
11
作者 Chong Wang Zhi-Ping Qiu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第3期383-390,共8页
A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue... A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue of the level-cut method, the difference discrete equations with fuzzy parameters are equivalently transformed into groups of interval equations. New stability analysis theory suited to fuzzy difference schemes is developed. Based on the parameter perturbation method, the interval ranges of the uncertain temperature field can be approximately predicted. Subsequently, fuzzy solutions to the original difference equations are obtained by the fuzzy resolution theorem. Two numerical examples are given to demonstrate the feasibility and efficiency of the presented method for solving both steady-state and transient heat conduction problems. 展开更多
关键词 heat conduction Fuzzy uncertainties Finitedifference method Parameter perturbation Stability analysis
下载PDF
A new complex variable meshless method for transient heat conduction problems 被引量:4
12
作者 王健菲 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第12期42-50,共9页
In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is pres... In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper. 展开更多
关键词 meshless method improved complex variable moving least-square approximation com-plex variable meshless method transient heat conduction problem
下载PDF
A phase-field study on the oxidation behavior of Ni considering heat conduction 被引量:2
13
作者 Chao Wang Shigang Ai Daining Fang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第5期881-890,共10页
Phase-field modeling approach has been used to study the oxidation behavior of pure Ni when considering heat conduction. In this calculation, the dependence of the coefficient of the Cahn–Hilliard equation Lc on the ... Phase-field modeling approach has been used to study the oxidation behavior of pure Ni when considering heat conduction. In this calculation, the dependence of the coefficient of the Cahn–Hilliard equation Lc on the temperature T was considered. To this end, high-temperature oxidation experiments and phase-field modeling for pure Ni were performed in air under atmospheric pressure at 600,700, and 800?C. The oxidation rate was measured by thermogravimetry and Lc at these temperatures was determined via interactive algorithm. With the Lc-T relationship constructed, oxidation behavior of Ni when considering heat conduction was investigated. The influence of temperature boundaries on the oxidation degree, oxide film thickness, and specific weight gain were discussed. The phase-field modeling approach proposed in this study will give some highlights of the oxidation resistance analysis and cooling measures design of thermal protection materials. 展开更多
关键词 High-temperature oxidation Phase-field approach heat conduction Thermogravimetry analysis NICKEL
下载PDF
Meshless analysis of three-dimensional steady-state heat conduction problems 被引量:3
14
作者 程荣军 葛红霞 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期36-41,共6页
Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attr... Steady-state heat conduction problems arisen in connection with various physical and engineering problems where the functions satisfy a given partial differential equation and particular boundary conditions, have attracted much attention and research recently. These problems are independent of time and involve only space coordinates, as in Poisson's equation or the Laplace equation with Dirichlet, Neuman, or mixed conditions. When the problems are too complex, it is difficult to find an analytical solution, the only choice left is an approximate numerical solution. This paper deals with the numerical solution of three-dimensional steady-state heat conduction problems using the meshless reproducing kernel particle method (RKPM). A variational method is used to obtain the discrete equations. The essential boundary conditions are enforced by the penalty method. The effectiveness of RKPM for three-dimensional steady-state heat conduction problems is investigated by two numerical examples. 展开更多
关键词 reproducing kernel particle method meshless method steady-state heat conduction problem
下载PDF
Analytical solution for the time-fractional heat conduction equation in spherical coordinate system by the method of variable separation 被引量:2
15
作者 Ting-Hui Ning Xiao-Yun Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第6期994-1000,共7页
In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve ... In this paper,using the fractional Fourier law,we obtain the fractional heat conduction equation with a time-fractional derivative in the spherical coordinate system.The method of variable separation is used to solve the timefractional heat conduction equation.The Caputo fractional derivative of the order 0 〈 α≤ 1 is used.The solution is presented in terms of the Mittag-Leffler functions.Numerical results are illustrated graphically for various values of fractional derivative. 展开更多
关键词 Fractional Fourier law Fractional heat conduction equation - Spherical coordinate system - The separation of variables Mittag-Leffler function
下载PDF
Combining the complex variable reproducing kernel particle method and the finite element method for solving transient heat conduction problems 被引量:2
16
作者 陈丽 马和平 程玉民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期67-74,共8页
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho... In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method. 展开更多
关键词 complex variable reproducing kernel particle method finite element method combined method transient heat conduction
下载PDF
Two exact solutions of the DPL non-Fourier heat conduction equation with special conditions 被引量:1
17
作者 Youtong Zhang Changsong Zheng +2 位作者 Yongfeng Liu Liang Shao Chenhua Gou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第2期205-210,共6页
This paper presents two exact explicit solutions for the three dimensional dual-phase lag (DLP) heat conduction equation, during the derivation of which the method of trial and error and the authors' previous exper... This paper presents two exact explicit solutions for the three dimensional dual-phase lag (DLP) heat conduction equation, during the derivation of which the method of trial and error and the authors' previous experiences are utilized. To the authors' knowledge, most solutions of 2D or 3D DPL models available in the literature are obtained by numerical methods, and there are few exact solutions up to now. The exact solutions in this paper can be used as benchmarks to validate numerical solutions and to develop numerical schemes, grid generation methods and so forth. In addition, they are of theoretical significance since they correspond to physically possible situations. The main goal of this paper is to obtain some possible exact explicit solutions of the dual-phase lag heat conduction equation as the benchmark solutions for computational heat transfer, rather than specific solutions for some given initial and boundary conditions. Therefore, the initial and boundary conditions are indeterminate before derivation and can be deduced from the solutions afterwards. Actually, all solutions given in this paper can be easily proven by substituting them into the governing equation. 展开更多
关键词 Exact solution Dual-phase lag Non-Fourier Benchmark solution heat conduction
下载PDF
Voronoi Based Discrete Least Squares Meshless Method for Heat Conduction Simulation in Highly Irregular Geometries 被引量:1
18
作者 LABIBZADEH Mojtaba 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期98-111,共14页
A new technique is used in Discrete Least Square Meshfree(DLSM) method to remove the common existing deficiencies of meshfree methods in handling of the problems containing cracks or concave boundaries. An enhanced ... A new technique is used in Discrete Least Square Meshfree(DLSM) method to remove the common existing deficiencies of meshfree methods in handling of the problems containing cracks or concave boundaries. An enhanced Discrete Least Squares Meshless method named as VDLSM(Voronoi based Discrete Least Squares Meshless) is developed in order to solve the steady-state heat conduction problem in irregular solid domains including concave boundaries or cracks. Existing meshless methods cannot estimate precisely the required unknowns in the vicinity of the above mentioned boundaries. Conducted researches are limited to domains with regular convex boundaries. To this end, the advantages of the Voronoi tessellation algorithm are implemented. The support domains of the sampling points are determined using a Voronoi tessellation algorithm. For the weight functions, a cubic spline polynomial is used based on a normalized distance variable which can provide a high degree of smoothness near those mentioned above discontinuities. Finally, Moving Least Squares(MLS) shape functions are constructed using a varitional method. This straight-forward scheme can properly estimate the unknowns(in this particular study, the temperatures at the nodal points) near and on the crack faces, crack tip or concave boundaries without need to extra backward corrective procedures, i.e. the iterative calculations for modifying the shape functions of the nodes located near or on these types of the complex boundaries. The accuracy and efficiency of the presented method are investigated by analyzing four particular examples. Obtained results from VDLSM are compared with the available analytical results or with the results of the well-known Finite Elements Method(FEM) when an analytical solution is not available. By comparisons, it is revealed that the proposed technique gives high accuracy for the solution of the steady-state heat conduction problems within cracked domains or domains with concave boundaries and at the same time possesses a high convergence rate which its accuracy is not sensitive to the arrangement of the nodal points. The novelty of this paper is the use of Voronoi concept in determining the weight functions used in the formulation of the MLS type shape functions. 展开更多
关键词 Discrete Least Squares Meshless crack Voronoi tessellation concave boundaries Steady-state heat conduction.
下载PDF
Hybrid graded element model for transient heat conduction in functionally graded materials 被引量:4
19
作者 Lei-Lei Cao Qing-Hua Qin Ning Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期128-139,共12页
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a f... This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method. 展开更多
关键词 Graded element model Functionally graded materials Hybrid FEM Transient heat conduction
下载PDF
Isogeometric Boundary Element Analysis for 2D Transient Heat Conduction Problem with Radial Integration Method 被引量:1
20
作者 Leilei Chen Kunpeng Li +3 位作者 Xuan Peng Haojie Lian Xiao Lin Zhuojia Fu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第1期125-146,共22页
This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structu... This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structures,are employed to discretize the physical unknowns in the boundary integral formulations of the governing equations.Bezier extraction technique is employed to accelerate the evaluation of NURBS basis functions.We adopt a radial integration method to address the additional domain integrals.The numerical examples demonstrate the advantage of IGABEM in dimension reduction and the seamless connection between CAD and numerical analysis. 展开更多
关键词 Isogeometric analysis NURBS boundary element method heat conduction radial integration method
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部