Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD mod...Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD modeling was used to simulate the transport characteristics of solid particles in supercdtical water through the shell and tube of heat exchangers to alleviate the problems. In this paper, we discuss seven types of exchangers CA, B, C D, E, F and G), which vary in inlet nozzle configuration, header height, inlet pipe diameter and tube pass distribution. In the modeling, the possibility of deposition in the header was evaluated by accumulated mass of particles; we used the velocity contour of supercritical water (SCW) to evaluate the uniformity of the velocity dis- tribution among the tube passes. Simulation results indicated that the optimum heat exchanger had structure F, which had a rectangular configuration of tube pass distractions, a bottom inlet, a 200-mm header height and a 10-ram inlet pipe diameter.展开更多
It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, t...It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, the air conditioning system is analysed and an innovative way is suggested. We use natural low temperature of shallow sub surface (1 - 3 m) of the earth—geothermal cooling system. It is known that majority of the households and the apartment complexes in India have two tanks for water storage. One is the underground water sump and the other is the overhead water tank. In our study, we use these two water storage systems for space cooling during summer and also for heating during winter. The main aim of our paper is air-conditioning of the space in an economic way to save electricity. It is based on a simple idea of transferring the low temperature from underground water sump to the room in the house using water as a mode of transport. Since India is a tropical country located at low latitude, most of the year, the air temperature is high and demands space cooling. However, for a couple of months during severe winter months (Dec.-Jan.) at Ahmedabad, heating of the space is required. For heating the space, we suggest to use the well-known solar water heater. Effective use of heat exchanger is shown through computation, modelling schemes and lab experiment. We recommend geothermal cooling for 10 months in a year and solar hot water system during 2 months of winter. It is observed that the ambient air temperature of 35°C - 40°C in the room can be brought down to 26°C without much consumption of electricity. In a similar manner, the room temperature at night (13°C) during winter in Ahmedabad can be increased to 27°C through circulation of water from solar water heater in the heat exchanger.展开更多
On the basis of information from the project "Land-surface Processes and their Experimental Study on the Chinese Loess Plateau", we analyzed differences in land-surface water and heat processes during the main dry a...On the basis of information from the project "Land-surface Processes and their Experimental Study on the Chinese Loess Plateau", we analyzed differences in land-surface water and heat processes during the main dry and wet periods of the semiarid grassland growing season in Yuzhong County, as well as the influences of these environmental factors. Studies have shown that there are significant differences in changes of land-surface temperature and humidity during dry and wet periods. Daily average normalized temperature has an overall vertical distribution of "forward tilting" and "backward tilting" during dry and wet periods, respectively. During the dry period, shallow soil above 20-cm depth is the active temperature layer. The heat transfer rate in soil is obviously different during dry and wet periods. During the dry period, the ratio of sensible heat flux to net radiation (H/Rn) and the value of latent heat flux to net radiation (LE/Rn) have a linear relationship with 5-cm soil temperature; during the wet period, these have a nonlinear relationship with 5-cm soil temperature, and soil temperature of 16℃ is the critical temperature for changes in the land-surface water and heat exchange trend on a daily scale. During the dry period, H/Rn and LE/Rn have a linear relationship with soil water content. During the wet period, these have a nonlinear relationship with 5-cm soil water content, and 0.21 m^3 m^-3 is the critical point for changes in the land-surface water and heat exchange trend at daily scale. During the dry period, for vapor pressure deficit less than 0.7 kPa, H/Rn rises with increased vapor pressure deficit, whereas LEIRn decreases with that increase. When that deficit is greater than 0.7 kPa, both H/Rn and LE/Rn tend to be constant. During the wet period, H/Rn increases with the vapor pressure deficit, whereas LE/Rn decreases. The above characteristics directly reflect the effect of differences in land-surface environmental factors during land-surface water and heat exchange processes, and indirectly reflect the influences of cloud precipitation processes on those processes.展开更多
The electrohydrodynamics (EHD) enhancement of convection heat transfer of water in a jacket tube heat exchanger was studied through an experimental method in this paper. In the experiment,a DC high voltage electrode...The electrohydrodynamics (EHD) enhancement of convection heat transfer of water in a jacket tube heat exchanger was studied through an experimental method in this paper. In the experiment,a DC high voltage electrode was set in the central tube-side of the heat exchanger,and the high voltage electrode in the tube-side was adjustable in the range of 0-40 kV. Five differ-ent combinations of heat transfer enhancement experiments were conducted under the different voltage and rate of flow. The results indicate that the maximal enhancement coefficient θ is 1.224 when the flow rate of tube-side inlet is 0.1 m3/h. It is proved that,for the work medium of water,the convective heat transfer can be enhanced by applying high electric field. The performance of EHD-enhanced is sensitive to the variation of flow rate,and in the same flow rate,there exist an optimized voltage in the EHD-enhanced process ra-ther than the monotonic positive-correlation relationship.展开更多
A new all-solid-state carbonate ion-selective electrode was fabricated via electrochemical and ion-exchange reactions with Ag nanoparticles and Ag2CO3-BaCO3 as ion-to-electron transducer and ion-selective layer, respe...A new all-solid-state carbonate ion-selective electrode was fabricated via electrochemical and ion-exchange reactions with Ag nanoparticles and Ag2CO3-BaCO3 as ion-to-electron transducer and ion-selective layer, respectively. This paper presented the detailed procedures of the construction of the electrode, the applications of the electrode in various experiments, and the corresponding chemical reaction principles involved. The fabricated electrode was characterized by means of scanning electron microscopy(SEM), energy dispersive spectrometer(EDS), and electrochemical analyses. The electrode exhibited stable linear responses to carbonate anions(10-5--10-1 mol/L) with average Slope of the curve being -26.56 mV per decade, and showed negligible responses to NO3, SO2-, and Sal- anions. The electrode was further used to measure the concentration of carbonate anions in boiler water. The measured concentration was lower than that determined via titration. Overall, the electrode exhibited the advantages of miniaturized size, robust construction, and compatibility with other equipment and thus could be ideally integrated into various sensor platforms to collect chemical data from industrial heat exchangers.展开更多
基金Supported by the National Basic Research Program of China(2014CB745100)the National Natural Science Foundation of China(21576197)+1 种基金Tianjin Research Program of Application Foundation and Advanced Technology(14JCQNJC06700)Tianjin Penglai 19-3 Oil Spill Accident Compensation Project(19-3 BC2014-03)
文摘Heat exchangers play an important role in supercritical water coal gasification systems for heating feed and cooling products. However, serious deposition and plugging problems always exist in heat exchangers. CFD modeling was used to simulate the transport characteristics of solid particles in supercdtical water through the shell and tube of heat exchangers to alleviate the problems. In this paper, we discuss seven types of exchangers CA, B, C D, E, F and G), which vary in inlet nozzle configuration, header height, inlet pipe diameter and tube pass distribution. In the modeling, the possibility of deposition in the header was evaluated by accumulated mass of particles; we used the velocity contour of supercritical water (SCW) to evaluate the uniformity of the velocity dis- tribution among the tube passes. Simulation results indicated that the optimum heat exchanger had structure F, which had a rectangular configuration of tube pass distractions, a bottom inlet, a 200-mm header height and a 10-ram inlet pipe diameter.
文摘It is well known that one unit of electrical energy saved is equal to more than two units produced. One way of economizing the power is utilization of energy efficient systems at all locations. In the present study, the air conditioning system is analysed and an innovative way is suggested. We use natural low temperature of shallow sub surface (1 - 3 m) of the earth—geothermal cooling system. It is known that majority of the households and the apartment complexes in India have two tanks for water storage. One is the underground water sump and the other is the overhead water tank. In our study, we use these two water storage systems for space cooling during summer and also for heating during winter. The main aim of our paper is air-conditioning of the space in an economic way to save electricity. It is based on a simple idea of transferring the low temperature from underground water sump to the room in the house using water as a mode of transport. Since India is a tropical country located at low latitude, most of the year, the air temperature is high and demands space cooling. However, for a couple of months during severe winter months (Dec.-Jan.) at Ahmedabad, heating of the space is required. For heating the space, we suggest to use the well-known solar water heater. Effective use of heat exchanger is shown through computation, modelling schemes and lab experiment. We recommend geothermal cooling for 10 months in a year and solar hot water system during 2 months of winter. It is observed that the ambient air temperature of 35°C - 40°C in the room can be brought down to 26°C without much consumption of electricity. In a similar manner, the room temperature at night (13°C) during winter in Ahmedabad can be increased to 27°C through circulation of water from solar water heater in the heat exchanger.
基金supported by the National Basic Research Program of China(Grant No.2013CB430206,2012CB955304)National Natural Science Foundation of China(Grant Nos.41075008,40830957,41275118)+2 种基金China Postdoctoral Science Special Foundation(Grant No.2013T60901)China Postdoctoral Science Foundation(Grant No.20110490854)the Ten Talents Program of Gansu Meteorology Bureau
文摘On the basis of information from the project "Land-surface Processes and their Experimental Study on the Chinese Loess Plateau", we analyzed differences in land-surface water and heat processes during the main dry and wet periods of the semiarid grassland growing season in Yuzhong County, as well as the influences of these environmental factors. Studies have shown that there are significant differences in changes of land-surface temperature and humidity during dry and wet periods. Daily average normalized temperature has an overall vertical distribution of "forward tilting" and "backward tilting" during dry and wet periods, respectively. During the dry period, shallow soil above 20-cm depth is the active temperature layer. The heat transfer rate in soil is obviously different during dry and wet periods. During the dry period, the ratio of sensible heat flux to net radiation (H/Rn) and the value of latent heat flux to net radiation (LE/Rn) have a linear relationship with 5-cm soil temperature; during the wet period, these have a nonlinear relationship with 5-cm soil temperature, and soil temperature of 16℃ is the critical temperature for changes in the land-surface water and heat exchange trend on a daily scale. During the dry period, H/Rn and LE/Rn have a linear relationship with soil water content. During the wet period, these have a nonlinear relationship with 5-cm soil water content, and 0.21 m^3 m^-3 is the critical point for changes in the land-surface water and heat exchange trend at daily scale. During the dry period, for vapor pressure deficit less than 0.7 kPa, H/Rn rises with increased vapor pressure deficit, whereas LEIRn decreases with that increase. When that deficit is greater than 0.7 kPa, both H/Rn and LE/Rn tend to be constant. During the wet period, H/Rn increases with the vapor pressure deficit, whereas LE/Rn decreases. The above characteristics directly reflect the effect of differences in land-surface environmental factors during land-surface water and heat exchange processes, and indirectly reflect the influences of cloud precipitation processes on those processes.
基金Supported by the National Natural Science Foundation of China (51006076, 50906065)the Program for Excellent Young and Mid-dle-Aged Researchers in Hubei Province (Q20081508)
文摘The electrohydrodynamics (EHD) enhancement of convection heat transfer of water in a jacket tube heat exchanger was studied through an experimental method in this paper. In the experiment,a DC high voltage electrode was set in the central tube-side of the heat exchanger,and the high voltage electrode in the tube-side was adjustable in the range of 0-40 kV. Five differ-ent combinations of heat transfer enhancement experiments were conducted under the different voltage and rate of flow. The results indicate that the maximal enhancement coefficient θ is 1.224 when the flow rate of tube-side inlet is 0.1 m3/h. It is proved that,for the work medium of water,the convective heat transfer can be enhanced by applying high electric field. The performance of EHD-enhanced is sensitive to the variation of flow rate,and in the same flow rate,there exist an optimized voltage in the EHD-enhanced process ra-ther than the monotonic positive-correlation relationship.
文摘A new all-solid-state carbonate ion-selective electrode was fabricated via electrochemical and ion-exchange reactions with Ag nanoparticles and Ag2CO3-BaCO3 as ion-to-electron transducer and ion-selective layer, respectively. This paper presented the detailed procedures of the construction of the electrode, the applications of the electrode in various experiments, and the corresponding chemical reaction principles involved. The fabricated electrode was characterized by means of scanning electron microscopy(SEM), energy dispersive spectrometer(EDS), and electrochemical analyses. The electrode exhibited stable linear responses to carbonate anions(10-5--10-1 mol/L) with average Slope of the curve being -26.56 mV per decade, and showed negligible responses to NO3, SO2-, and Sal- anions. The electrode was further used to measure the concentration of carbonate anions in boiler water. The measured concentration was lower than that determined via titration. Overall, the electrode exhibited the advantages of miniaturized size, robust construction, and compatibility with other equipment and thus could be ideally integrated into various sensor platforms to collect chemical data from industrial heat exchangers.