期刊文献+
共找到181篇文章
< 1 2 10 >
每页显示 20 50 100
Topology Optimization of Two Fluid Heat Transfer Problems for Heat Exchanger Design
1
作者 Kun Yan Yunyu Wang Jun Yan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1949-1974,共26页
Topology optimization of thermal-fluid coupling problems has received widespread attention.This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design.The proposed method uti... Topology optimization of thermal-fluid coupling problems has received widespread attention.This article proposes a novel topology optimization method for laminar two-fluid heat exchanger design.The proposed method utilizes an artificial density field to create two permeability interpolation functions that exhibit opposing trends,ensuring separation between the two fluid domains.Additionally,a Gaussian function is employed to construct an interpolation function for the thermal conductivity coefficient.Furthermore,a computational program has been developed on the OpenFOAM platform for the topology optimization of two-fluid heat exchangers.This program leverages parallel computing,significantly reducing the time required for the topology optimization process.To enhance computational speed and reduce the number of constraint conditions,we replaced the conventional pressure drop constraint condition in the optimization problem with a pressure inlet/outlet boundary condition.The 3D optimization results demonstrate the characteristic features of a surface structure,providing valuable guidance for designing heat exchangers that achieve high heat exchange efficiency while minimizing excessive pressure loss.At the same time,a new structure appears in large-scale topology optimization,which proves the effectiveness and stability of the topology optimization program written in this paper in large-scale calculation. 展开更多
关键词 Topology optimization two fluid heat exchanger OPENFOAM large scale
下载PDF
CFD-Based Optimization of a Shell-and-Tube Heat Exchanger
2
作者 Juanjuan Wang Jiangping Nan Yanan Wang 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2761-2775,共15页
The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then... The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger(STHE).In order to do so,a simulation model is introduced that takes into account the related gas-phase circulation.Then,simulation verification experiments are designed in order to validate the model.The results show that the tem-peraturefield undergoes strong variations in time when an inlet wind speed of 6 m/s is considered,while the heat transfer error reaches a minimum of 5.1%.For an inlet velocity of 9 m/s,the heat transfer drops to the lowest point,while the heat transfer error reaches a maximum,i.e.,9.87%.The pressure drop increasesfirst and then decreases with an increase in the wind speed and reaches a maximum of 819 Pa under the 9 m/s wind speed con-dition.Moreover,the pressure drops,and the heat transfer coefficient increases with the Reynolds number. 展开更多
关键词 heat exchanger AERODYNAMICS engineeringfluid mechanics TUBE heat transmission heat transfer model numerical simulation
下载PDF
Analysis of influence of heat exchangerfouling on heat transfer performancebased on thermal fluid coupling
3
作者 HUANG Si MURAD Tariq +2 位作者 NIU Qifeng LIN Guangtang CHEN Jianxun 《排灌机械工程学报》 CSCD 北大核心 2023年第7期695-700,共6页
A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do... A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact. 展开更多
关键词 shell-tube heat exchanger thermal fluid coupling fouling thermal resistance heat transfer analysis
下载PDF
Simulation and Optimization of the Fluid Solidification Process in Brazed Plate Heat Exchangers
4
作者 Weiting Jiang Lei Zhao +2 位作者 Chongyang Wang Tingni He Weiguo Pan 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2597-2611,共15页
When a brazed plate heat exchanger is used as an evaporator,the working mass in the channel may undergo soli-dification,thereby hindering the refrigeration cycle.In this study the liquid solidification process and its o... When a brazed plate heat exchanger is used as an evaporator,the working mass in the channel may undergo soli-dification,thereby hindering the refrigeration cycle.In this study the liquid solidification process and its optimi-zation in a brazed plate heat exchanger are investigated numerically for different inlet velocities;moreover,different levels of corrugation are considered.The results indicate that solidificationfirst occurs around the con-tacts,followed by the area behind the contacts.It is also shown that deadflow zones exist in the sharp areas and such areas are prone to liquid solidification.After optimization,the solidification area attains its smallest value when a corrugation spacingλ=4.2 mm is considered. 展开更多
关键词 Brazed plate heat exchanger numerical simulation SOLIDIFICATION CONTACTS
下载PDF
Evaluation of Shell and Tube Heat Exchanger Performance by Using ZnO/Water Nanofluids
5
作者 Hussein Hayder Mohammed Ali Adnan M Hussein +1 位作者 Kadum Mohammed Hussain Allami Barhm Mohamad 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第6期62-69,共8页
To examine and investigate the impact of nanofluid on heat exchanger performance,including the total heat transfer,the effect of friction factor,the average Nusselt number,and the thermal efficiency,the output heat tr... To examine and investigate the impact of nanofluid on heat exchanger performance,including the total heat transfer,the effect of friction factor,the average Nusselt number,and the thermal efficiency,the output heat transfers of a shell and tube heat exchanger using ZnO nanoparticles suspended in water has been conducted numerically.The governing equations were solved using finite volume techniques and CFD simulations with ANSYS/FLUENT Solver 2021.The nanoparticles volume fractions adopted are 0.2%and 0.35%that used in numerical computations under 200 to 1400 Reynolds numbers range.The increasing of temperature is approximately 13%from the bottom to the top of heat exchanger,while the maximum enhancement of Nusselt number is about 10%,19%for volume fractions 0.2%and 0.35%respectively.The elevated values of the friction factor at the volumetric ratios of 0.2%and 0.35%are 0.25%and 0.47%respectively.The findings demonstrate that the performance efficiency of shell and tube heat exchanger is enhanced due to the increase in Nusselt number. 展开更多
关键词 CFD Reynold number thermal efficiency Nusselt number NANOFLUID heat exchanger
下载PDF
Experiment Study on the Exhaust-Gas Heat Exchanger for Small and Medium-Sized Marine Diesel Engine
6
作者 Li Luo Yuhang Fan +3 位作者 Yu Wang Peiyong Ni Xuewen Zhang Guannan Xi 《Energy Engineering》 EI 2023年第1期125-145,共21页
This paper aims to design a special exchanger to recover the exhaust gas heat of marine diesel engines used in small and medium-sized fishing vessels,which can then be used to heat water up to 55°C–85°C for... This paper aims to design a special exchanger to recover the exhaust gas heat of marine diesel engines used in small and medium-sized fishing vessels,which can then be used to heat water up to 55°C–85°C for membrane desalination devices to produce fresh water.A new exhaust-gas heat exchanger of fins and tube,with a reinforced heat transfer tube section,unequal spacing fins,a mixing zone between the fin groups and four routes tube bundle,was designed.Numerical simulations were also used to provide reference information for structural design.Experiments were carried out for exhaust gas waste heat recovery from a marine diesel engine in an engine test bench utilizing the heat exchanger.The experimental results show that the difference between heat absorption by water and heat reduction of exhaust gas is less than 6.5%.After the water flow rate was adjusted,the exhaust gas waste heat recovery efficiency was higher than 70%,and the exhaust-gas heat exchanger’s outlet water temperature was 55°C–85°C at different engine loads.This means that the heat recovery from the exhaust gas of a marine diesel engine meets the requirement to drive a membrane desalination device to produce fresh water for fishers working in small and medium-sized fishing vessels. 展开更多
关键词 Marine diesel engine exhaust gas waste heat recovery heat exchanger flow field simulation experimental analysis
下载PDF
The Use of Models to Evaluate Corrosion Effects on Mild Steel Heat Exchanger in Water and Mono Ethanol Amine (MEA)
7
作者 Ojong Elias Ojong Jaja Zina +6 位作者 Wosu Chimene Omeke Ana Anakri Ekpenyong Dadet Wilson Anaba Catherine Uloma Emenike Aguma Sedi Patrick Forwah Jacques Ndeh 《Advances in Chemical Engineering and Science》 2023年第4期336-350,共15页
Heat exchanger is an important equipment used in process industries for cooling and heating purposes. Its design configuration which involves the flow of cold and hot fluids within the exchanger subjects it to corrosi... Heat exchanger is an important equipment used in process industries for cooling and heating purposes. Its design configuration which involves the flow of cold and hot fluids within the exchanger subjects it to corrosion attack. The article utilized the principle of mass and energy conservation in the development of weight and temperature models to study the effect of corrosion on mild steel coupon inside the exchanger containing water and Mono ethanol amine (MEA). The models developed were resolved analytically using Laplace Transform and simulated using Excel as simulation tool and data obtained from experiment in the laboratory to obtain profiles of weight loss and temperature as a function of time. The weight loss and performance of mild steel under various corrosive conditions were examined which indicates the effect of corrosion on the mild steel heat exchanger in water and MEA media. The result shows that water is more corrosive than MEA at higher temperatures and at lower temperatures of 35°C and 1 atm, MEA has inhibitive properties than water as indicated by the weight loss result with time. The comparative analysis between the results obtained from the model simulation and experimental results shows that the result obtained from the model is more reliable and demonstrated better performance characteristics as it clearly shows mild steel heat exchanger experiences more corrosive effect in water medium than MEA at higher temperatures. And at lower temperatures, MEA becomes more inhibitive and less corrosive than water. The model simulation results correlate with various literatures and hence, it is valid for future referencing. 展开更多
关键词 Model Corrosion Effect heat exchanger Simulation Media Mild Steel COUPON
下载PDF
Localized Theoretical Analysis of Thermal Performance of Individually Finned Heat Pipe Heat Exchanger for Air Conditioning with Freon R404A as Working Fluid
8
作者 Élcio Nogueira 《Journal of Materials Science and Chemical Engineering》 2023年第8期61-85,共17页
This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat... This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes. 展开更多
关键词 Individually Finned heat Pipe heat exchanger Thermal Efficiency Thermal Effectiveness Air Conditioning Freon R404A
下载PDF
Localized Theoretical Analysis of Thermal Performance of Individually Finned Heat Pipe Heat Exchanger for Air Conditioning with Freon R404A as Working Fluid
9
作者 Élcio Nogueira 《Journal of Modern Physics》 2023年第8期61-85,共6页
This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat... This work contributes to the improvement of energy-saving in air conditioning systems. The objective is to apply the thermal efficiency of heat exchangers for localized determination of the thermal performance of heat exchangers with individually finned heat pipes. The fundamental parameters used for performance analysis were the number of fins per heat pipe, the number of heat pipes, the inlet temperatures, and the flow rates of hot and cold fluids. The heat exchanger under analysis uses Freon 404A as a working fluid in an air conditioning system for cooling in the Evaporator and energy recovery in the Condenser. The theoretical model is localized and applied individually to the Evaporator, Condenser, and heat exchanger regions. The results obtained through the simulation are compared with experimental results that use a global approach for the heat exchanger. The thermal quantities obtained through the theoretical model in the mentioned regions are air velocity, Nusselt number, thermal effectiveness, heat transfer rate, and outlet temperature. The comparisons made with global experimental results are in excellent agreement, demonstrating that the localized theoretical approach developed is consistent and can be used as a comprehensive analysis tool for heat exchangers using heat pipes. 展开更多
关键词 Individually Finned heat Pipe heat exchanger Thermal Efficiency Thermal Effectiveness Air Conditioning Freon R404A
下载PDF
R&D on Resistive Heat Exchangers for HTS High Rated Current Leads
10
作者 毕延芳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第6期757-764,共8页
The HTS current leads of superconducting magnets for large scale fusion devices and high energy particle colliders can reduce the power consumption for cooling by 2/3 compared with conventional leads. The resistive se... The HTS current leads of superconducting magnets for large scale fusion devices and high energy particle colliders can reduce the power consumption for cooling by 2/3 compared with conventional leads. The resistive sections of high-rated current leads are usually made of a heat exchanger cooled by gas flow. The supply of the cooling mass flow incurs more than 90% of the cooling cost for the HTS leads. The mass flow rate requirement depends not only on the length and material of the resistive heat exchanger, but also on the heat transfer coefficient and HEX surface, the joint resistance at the cold end of a sheet-stack HEX with a larger specific presented in the paper. The test results of efficiency can be achieved. and its cooling approach. The design and operation surface and a much smaller hydraulic diameter are an HTS lead optimized for 8 kA show that a 98.4% 展开更多
关键词 current lead resistive heat exchanger heat exchanger efficiency HTS
下载PDF
Industrially Experimental Investigations and Development of the Curve-ROD Baffle Heat Exchanger 被引量:7
11
作者 严良文 吴金星 王志文 《Journal of Shanghai University(English Edition)》 CAS 2004年第3期337-341,共5页
The conventional heat exchanger with segmental baffles is prone to bring forth fluid-induced vibration of heat transfer tubes and increase the pressure drop of shell-side greatly at higher fluid flow velocity. In orde... The conventional heat exchanger with segmental baffles is prone to bring forth fluid-induced vibration of heat transfer tubes and increase the pressure drop of shell-side greatly at higher fluid flow velocity. In order to avoid the above defects, the ROD-baffle heat exchanger has been developed. However, its collocation of heat transfer tubes is conventionally in square, which leads to fewer heat transfer area per unit volume. Based on the ROD-baffle heat exchanger, a new type curve-ROD baffle has been developed, and an industrial investigation of the curve-ROD baffle heat exchanger with normal triangular collocation has been carried into execution. In this paper, two equations using the Reynolds number were acquired to predict the heat transfer coefficients of the shell-side and tube-side. The experimental results show that the shell-side heat transfer and pressure drop characteristics of the curve-ROD baffle heat exchanger are superior to those of the segmental baffle one. 展开更多
关键词 heat exchanger curve-ROD baffle heat transfer pressure drop experimental investigation.
下载PDF
New Optimization Method, the Algorithms of Changes, for Heat Exchanger Design 被引量:6
12
作者 TAM Houkuan TAM Lapmou +2 位作者 TAM Sikchung CHIO Chouhei GHAJAR Afshin J 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期55-62,共8页
Heat exchangers are widely used in the process engineering such as the chemical industries, the petroleum industries, and the HVAC applications etc. An optimally designed heat exchanger cannot only help the optimizati... Heat exchangers are widely used in the process engineering such as the chemical industries, the petroleum industries, and the HVAC applications etc. An optimally designed heat exchanger cannot only help the optimization of the equipment size but also the reduction of the power consumption. In this paper, a new optimization approach called algorithms of changes (AOC) is proposed for design and optimization of the shell-tube heat exchanger. This new optimization technique is developed based on the concept of the book of changes (I Ching) which is one of the oldest Chinese classic texts. In AOC, the hexagram operations in I Ching are generalized to binary string case and an iterative process, which imitates the I Ching inference, is defined. Before applying the AOC to the heat exchanger design problem, the new optimization method is examined by the benchmark optimization problems such as the global optimization test functions and the travelling salesman problem (TSP). Based on the TSP results, the AOC is shown to be superior to the genetic algorithms (GA). The AOC is then used in the optimal design of heat exchanger. The shell inside diameter, tube outside diameter, and baffles spacing are treated as the design (or optimized) variables. The cost of the heat exchanger is arranged as the objective function. For the heat exchanger design problem, the results show that the AOC is comparable to the GA method. Both methods can find the optimal solution in a short period of time. 展开更多
关键词 OPTIMIZATION genetic algorithms (GA) travelling salesman problem (TSP) heat exchanger design algorithms of changes (AOC)
下载PDF
Entropy resistance analyses of a two-stream parallel flow heat exchanger with viscous heating 被引量:3
13
作者 程雪涛 梁新刚 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第8期361-364,共4页
Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy g... Heat exchangers are widely used in industry, and analyses and optimizations of the performance of heat exchangers are important topics. In this paper, we define the concept of entropy resistance based on the entropy generation analyses of a one-dimensional heat transfer process. With this concept, a two-stream parallel flow heat exchanger with viscous heating is analyzed and discussed. It is found that the minimization of entropy resistance always leads to the maximum heat transfer rate for the discussed two-stream parallel flow heat exchanger, while the minimizations of entropy generation rate, entropy generation numbers, and revised entropy generation number do not always. 展开更多
关键词 entropy generation minimization heat exchanger entropy resistance ANALYSES
下载PDF
Performance comparison for oil-water heat transfer of circumferential overlap trisection helical baffle heat exchanger 被引量:2
14
作者 王伟晗 程道来 +1 位作者 刘涛 刘颖昊 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2720-2727,共8页
The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and com... The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and compared with a segmental baffle heat exchanger. The results show that the shell side heat transfer coefficient h_o and pressure drop Δp_o both increase while the comprehensive index h_o/Δp_o decreases with the increase of the mass flow rate of all schemes. And the shell side heat transfer coefficient, pressure drop and the comprehensive index ho/Δpo decrease with the increase of the baffle incline angle at a certain mass flow rate. The average values of shell side heat transfer coefficient and the comprehensive index h_o/Δp_o of the 12° helical baffled scheme are above 50% higher than those of the segmental one correspondingly, while the pressure drop value is very close and the ratios of the average values are about 1.664 and 1.596, respectively. The shell-side Nusselt number Nu_o and the comprehensive index Nu_o·Eu_(zo)^(-1) increase with the increase of Reynolds number of the shell side axial in all schemes, and the results also demonstrate that the small incline angled helical scheme has better comprehensive performance. 展开更多
关键词 performance experiments helical baffled heat exchangers circumferential overlap of baffles incline angle of baffle heat transfer enhancement
下载PDF
Simulating the Turbulent Hydrothermal Behavior of Oil/MWCNT Nanofluid in a Solar Channel Heat Exchanger Equipped with Vortex Generators 被引量:2
15
作者 Rachid Maouedj Younes Menni +3 位作者 Mustafa Inc Yu-Ming Chu Houari Ameur Giulio Lorenzini 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第3期855-889,共35页
Re-engineering the channel heat exchangers(CHEs)is the goal of many recent studies,due to their great importance in the scope of energy transport in various industrial and environmental fields.Changing the internal ge... Re-engineering the channel heat exchangers(CHEs)is the goal of many recent studies,due to their great importance in the scope of energy transport in various industrial and environmental fields.Changing the internal geometry of the CHEs by using extended surfaces,i.e.,VGs(vortex generators),is the most common technique to enhance the efficiency of heat exchangers.This work aims to develop a newdesign of solar collectors to improve the overall energy efficiency.The study presents a new channel design by introducing VGs.The FVM(finite volume method)was adopted as a numerical technique to solve the problem,with the use of Oil/MWCNT(oil/multi-walled carbon nano-tubes)nanofluid to raise the thermal conductivity of the flow field.The study is achieved for a Re number ranging from12×10^(3) to 27×10^(3),while the concentration(φ)of solid particles in the fluid(Oil)is set to 4%.The computational results showed that the hydrothermal characteristics depend strongly on the flow patterns with the presence of VGs within the CHE.Increasing the Oil/MWCNT rates with the presence of VGs generates negative turbulent velocities with high amounts,which promotes the good agitation of nanofluid particles,resulting in enhanced great transfer rates. 展开更多
关键词 Channel heat exchanger FORCED-CONVECTION Oil/MWCNT nanofluid CFD vortex generators
下载PDF
Optimization of a Heat Exchanger Using an ARM Core Intelligent Algorithm 被引量:2
16
作者 Yajuan Jia Juanjuan Wang Lisha Shang 《Fluid Dynamics & Materials Processing》 EI 2020年第5期871-882,共12页
In order to optimize heat transfer in a heat exchanger using an ARM(advanced RISC machine)core intelligent computer algorithm,a new type of controller has been designed.The whole control structure of the heat exchange... In order to optimize heat transfer in a heat exchanger using an ARM(advanced RISC machine)core intelligent computer algorithm,a new type of controller has been designed.The whole control structure of the heat exchange unit has been conceived on the basis of seven functional modules,including data processing and output,human-computer interaction,alarm,and data communication.The main controller and communication controller have been used in a combined fashion and a new MCU(micro control unit)system scheme has been proposed accordingly.A fuzzy controller has been designed by using a fuzzy control algorithm,and a new mode of heat transfer for the heat exchanger has been implemented by combining the fuzzy controller and the PID(proportioning integral derivative)controller.Finally,the model has been applied to an actual heat exchange station to test and verify the performances of the new approach. 展开更多
关键词 ARM heat exchanger fuzzy control algorithm communication controller PID controller
下载PDF
3D simulation on the unit duct in the shell side of the ROD baffle heat exchanger 被引量:2
17
作者 吴金星 董其伍 +1 位作者 刘敏珊 魏新利 《Journal of Shanghai University(English Edition)》 CAS 2006年第4期362-365,共4页
The ROD baffle heat exchanger can slightly enhance the shell side heat transfer coefficient with the significant reduction of pressure, loss due to the shell side fluid flowing longitudinally through tube bundle, whic... The ROD baffle heat exchanger can slightly enhance the shell side heat transfer coefficient with the significant reduction of pressure, loss due to the shell side fluid flowing longitudinally through tube bundle, which leads to the reduction of the manufacture and running cost and in some cases to the dimensions reduction of the heat exchangers. Because of the complexities of fluid dynamics equations and the structure of heat exchangers, few theoretical researches have been accomplished to specify the shell side characteristics of the ROD baffle heat exchanger. A unit duct model in the shell side of the longitudinal flow type heat exchanger has been developed based on suitable simplification. A numerical analysis on shell side of the ROD baffle heat exchanger has been carried out at constant wall temperature to obtain the characteristics of heat transfer and pressure drop. The numerical results show that the ROD baffles placed vertically and horizontally in the unit duct continue to shear and comminute the streamline flow when the fluid crosses over the ROD-baffles, and change the fluid flow directions, and then the continuity and stability of the fluid axe destroyed. The effect of disturbing flow can promote fluid turbulent intensity and effectively enhance heat transfer. The numerical analyses can provide the theoretical bases for optimizing the structure of ROD baffle heat exchanger and improving its performance. 展开更多
关键词 ROD baffle heat exchanger unit duct numerical simulation shell side characteristics.
下载PDF
Heat Exchanger Network Retrofit for Optimization of Crude Distillation Unit Using Pinch Analysis 被引量:2
18
作者 Sun Mengying Fu Dianliang Sun Lanyi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第1期31-40,共10页
Crude distillation unit(CDU)is regarded as the main energy consumer in the entire refinery process.In this paper,the process simulation software and the energy management software are used to simulate the flowsheet an... Crude distillation unit(CDU)is regarded as the main energy consumer in the entire refinery process.In this paper,the process simulation software and the energy management software are used to simulate the flowsheet and analyze the energy consumption,respectively.Stream data obtained from an existing CDU are applicable in the pinch analysis.To reduce the amount of cross-pinch heat transfer,three approaches of resequencing,repiping,and adding heat exchangers are adopted.Compared with the existing CDU,the results demonstrate that the inlet temperature of the furnace can be increased by 25.4℃,the amount of hot and cold utilities can be reduced by 15.1%and 19.6%,respectively.The economic evaluation indicates that the operating cost is saved by 8×106$/a,and the payback period is about 9 months. 展开更多
关键词 crude distillation unit pinch analysis heat exchanger network RETROFIT energy saving
下载PDF
Heat Exchanger Network Retrofit of Diesel Hydrotreating Unit Using Pinch Analysis 被引量:2
19
作者 Sun Mengying Zhang Fengjiao +1 位作者 Liu Xinglong Sun Lanyi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第2期34-43,共10页
Diesel hydrotreating unit(DHT)is an integral part of the refinery,and its energy-saving optimization is of great significance to the enterprise.In this paper,process simulation software and energy management software ... Diesel hydrotreating unit(DHT)is an integral part of the refinery,and its energy-saving optimization is of great significance to the enterprise.In this paper,process simulation software and energy management software are used to simulate the flowsheet and analyze the energy consumption,respectively.Stream data obtained from an existing DHT are applied in the pinch analysis for retrofitting the heat exchanger network(HEN)to achieve maximum energy utilization by using pinch analysis.Since DHT is constrained by pressure,the pressure factor is considered in the process of retrofitting.The results show that the amount of cross-pinch heat transfer is reduced,the inlet temperature of the furnace is increased by 55℃,and the amount of hot and cold utilities can be reduced by 70.25%and 50.16%,respectively.The economic evaluation indicates that the operating cost is saved by 4.39×10^(6)$/a,and the payback period is about 2 months. 展开更多
关键词 pinch analysis PRESSURE diesel hydrotreating unit heat exchanger network energy saving
下载PDF
Simulation of heat transfer performance using middle-deep coaxial borehole heat exchangers by FEFLOW 被引量:3
20
作者 KANG Wen-kai LIU Feng +1 位作者 YANG Fei-fan WANG Hua-jun 《Journal of Groundwater Science and Engineering》 2020年第4期315-327,共13页
Due to its large heat transfer area and stable thermal performance,the middledeep coaxial borehole heat exchanger(CBHE)has become one of the emerging technologies to extract geothermal energy.In this paper,a numerical... Due to its large heat transfer area and stable thermal performance,the middledeep coaxial borehole heat exchanger(CBHE)has become one of the emerging technologies to extract geothermal energy.In this paper,a numerical modeling on a three-dimensional unsteady heat transfer model of a CBHE was conducted by using software FEFLOW,in which the model simulation was compared with the other studies and was validated with experimental data.On this basis,a further simulation was done in respect of assessing the influencing factors of thermal extraction performance and thermal influence radius of the CBHE.The results show that the outlet temperature of the heat exchanger decreases rapidly at the initial stage,and then tended to be stable;and the thermal influence radius increases with the increase of borehole depth.The heat extraction rate of the borehole increases linearly with the geothermal gradient.Rock heat capacity has limited impact on the heat extraction rate,but has a great influence on the thermal influence radius of the CBHE.When there is groundwater flow in the reservoir,the increase of groundwater velocity will result in the rise of both outlet temperature and heat extraction rate.The heat affected zone extends along with the groundwater flow direction;and its influence radius is increasing along with flow velocity.In addition,the material of the inner pipe has a significant effect on the heat loss in the pipe,so it is recommended that the material with low thermal conductivity should be used if possible. 展开更多
关键词 Geothermal energy Coaxial borehole heat exchanger Geothermal gradient Groundwater velocity Rock heat capacity Thermal influence radius
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部