The aim of the present paper is to study flow and heat transfer charac- teristics of a viscous Casson thin film flow over an unsteady stretching sheet subject to variable heat flux in the presence of slip velocity con...The aim of the present paper is to study flow and heat transfer charac- teristics of a viscous Casson thin film flow over an unsteady stretching sheet subject to variable heat flux in the presence of slip velocity condition and viscous dissipation. The governing equations are partial differential equations. They are reduced to a set of highly nonlinear ordinary differential equations by suitable similarity transformations. The re- sulting similarity equations are solved numerically with a shooting method. Comparisons with previous works are macle, and the results are found to be in excellent agreement. In the present work, the effects of the unsteadiness parameter, the Casson parameter, the Eckert number, the slip velocity parameter, and the Prandtl number on flow and heat transfer characteristics are discussed. Also, the local skin-friction coefficient and the local Nusselt number at the stretching sheet are computed and discussed.展开更多
Thermal radiative heat transfer through a thin horizontal liquid film of a Newtonian nanofluid subjected to a magnetic field is considered.The physical boundary conditions are a variable surface heat flux and a unifor...Thermal radiative heat transfer through a thin horizontal liquid film of a Newtonian nanofluid subjected to a magnetic field is considered.The physical boundary conditions are a variable surface heat flux and a uniform concentration along the sheet.Moreover,viscous dissipation is present and concentration is assumed to be influenced by both thermophoresis and Brownian motion effects.Using a similarity method to turn the underlying Partial differential equations into a set of ordinary differential equations(ODEs)and a shooting technique to solve these equations,the skin-friction coefficient,the Nusselt number,and the Sherwood number are determined.Among other things,it is shown that large values of the thermal radiation heat transfer rate,thermal conductivity parameter,and the Brownian motion parameter can enhance the cooling of the sheet.展开更多
Gas-liquid two-phase flow and heat transfer can be encountered in numerous fields, such as chemical engineering, refrigeration, nuclear power reactor, metallurgical industry, spaceflight. Its critical heat flux (CHF) ...Gas-liquid two-phase flow and heat transfer can be encountered in numerous fields, such as chemical engineering, refrigeration, nuclear power reactor, metallurgical industry, spaceflight. Its critical heat flux (CHF) is one of the most important factors for the system security of engineering applications. Since annular flow is the most common flow pattern in gas-liquid two-phase flow, predicting CHF of annular two-phase flow is more significant. Many studies have shown that the liquid film dryout model is successful for that prediction, and determining the following parameters will exert predominant effects on the accuracy of this model: onset of annular flow, inception criterion for droplets entrainment, entrainment fraction, droplets deposition and entrainment rates. The main theoretical results achieved on the above five parameters are reviewed; also, limitations in the existing studies and problems for further research are discussed.展开更多
In order to research the influence of La2O3 on crystallization behavior of free-fluoride mould flux and the heat transfer of slag film,free-fluoride mould flux with various La2O3 content were investigated by using sel...In order to research the influence of La2O3 on crystallization behavior of free-fluoride mould flux and the heat transfer of slag film,free-fluoride mould flux with various La2O3 content were investigated by using self-made mould simulator,comprehensive thermal analyzer and SEM-EDS.With the increase of La2O3 content from 0% to 20%,the crystallization ratios of mould flux films were improved from 2% to 90% and the thicknesses of films were also enhanced over two times.Moreover,crystallization temperature was greatly raised and its increasing extent reached 100 oC.It could also decrease the melting temperature of casting powder about 50 oC.However,the undissolved La2O3 particles appeared in slag film if the ratio of La2O3 in free-fluoride mould flux was much too high.展开更多
In order to solve the problem of the high surface longitudinal crack ratio of heavy peritectic steel slabs produced by the No. 3 continuous caster at Baosteel,the physical properties of the original mold flux and the ...In order to solve the problem of the high surface longitudinal crack ratio of heavy peritectic steel slabs produced by the No. 3 continuous caster at Baosteel,the physical properties of the original mold flux and the optimized mold flux were compared in a comprehensive way by using analytical measures, such as a slag film heat-flow simulator, a thermowire molten flux crystallization tester and an X-ray diffractometer in the laboratory. The results reveal that one of the major reasons for the cracks is the poor heat transfer ability of the original mold flux. However, the optimized mold flux with a high basicity features a high crystallizing rate,low crystallization temperature and low heat-flow density. Therefore, the optimized mold flux is more suitable for casting peritectic steel by the heavy slab continuous caster. The test results show that the slabs produced by using the optimized mold flux had no surface longitudinal crack in four test casts, while the surface longitudinal crack ratio of the slabs produced by using the original mold flux was 5%. The optimized mold flux can effectively prevent slab surface longitudinal cracks from occurring.展开更多
Indium tin oxide(ITO)heating film is primarily used as the defogging component of an instrument observation window.Conventionally,a constant current is used to heat the film.Through the feedback of the temperature sen...Indium tin oxide(ITO)heating film is primarily used as the defogging component of an instrument observation window.Conventionally,a constant current is used to heat the film.Through the feedback of the temperature sensing component,the output current is adjusted to achieve a set temperature.However,the temperature of the heating film is nonuniformly distributed,and determining the correct output current is time-consuming.This study adopted finite element heat transfer analysis to determine a heating method(such as heat power and heat flux)for an ITO conductive heating film system.The results of the analysis may serve as a reference for temperature compensation in ITO conductive heating films.展开更多
An experimental apparatus for simulating copper mold is used to quantify the heat flux through the slag film and to obtain a solid slag for further determining its crystallization behavior. The result indicates that b...An experimental apparatus for simulating copper mold is used to quantify the heat flux through the slag film and to obtain a solid slag for further determining its crystallization behavior. The result indicates that both the chemical composition of the mold powder and the cooling rate have an important influence on the heat flux through the slag film. With increasing the binary basicity, the heat flux of slag film decreases at first, reaches the minimum at the basicity of 1.4, and then increases, indicating that the maximum binary basicity is about 1.4 for selecting "mild cooling" mold powder. The heat transfer through the slag film can be specified in terms of the crystalline ratio and the thickness of the slag film. Recrystallization of the solid slag occurs and must be considered as an important factor that may influence the heat transfer through the solid slag layer.展开更多
文摘The aim of the present paper is to study flow and heat transfer charac- teristics of a viscous Casson thin film flow over an unsteady stretching sheet subject to variable heat flux in the presence of slip velocity condition and viscous dissipation. The governing equations are partial differential equations. They are reduced to a set of highly nonlinear ordinary differential equations by suitable similarity transformations. The re- sulting similarity equations are solved numerically with a shooting method. Comparisons with previous works are macle, and the results are found to be in excellent agreement. In the present work, the effects of the unsteadiness parameter, the Casson parameter, the Eckert number, the slip velocity parameter, and the Prandtl number on flow and heat transfer characteristics are discussed. Also, the local skin-friction coefficient and the local Nusselt number at the stretching sheet are computed and discussed.
文摘Thermal radiative heat transfer through a thin horizontal liquid film of a Newtonian nanofluid subjected to a magnetic field is considered.The physical boundary conditions are a variable surface heat flux and a uniform concentration along the sheet.Moreover,viscous dissipation is present and concentration is assumed to be influenced by both thermophoresis and Brownian motion effects.Using a similarity method to turn the underlying Partial differential equations into a set of ordinary differential equations(ODEs)and a shooting technique to solve these equations,the skin-friction coefficient,the Nusselt number,and the Sherwood number are determined.Among other things,it is shown that large values of the thermal radiation heat transfer rate,thermal conductivity parameter,and the Brownian motion parameter can enhance the cooling of the sheet.
基金Project (No. 2006C24G2010027) supported by the Science and Technology Department of Zhejiang Province, China
文摘Gas-liquid two-phase flow and heat transfer can be encountered in numerous fields, such as chemical engineering, refrigeration, nuclear power reactor, metallurgical industry, spaceflight. Its critical heat flux (CHF) is one of the most important factors for the system security of engineering applications. Since annular flow is the most common flow pattern in gas-liquid two-phase flow, predicting CHF of annular two-phase flow is more significant. Many studies have shown that the liquid film dryout model is successful for that prediction, and determining the following parameters will exert predominant effects on the accuracy of this model: onset of annular flow, inception criterion for droplets entrainment, entrainment fraction, droplets deposition and entrainment rates. The main theoretical results achieved on the above five parameters are reviewed; also, limitations in the existing studies and problems for further research are discussed.
基金Project supported by the Inner Mongolia Science Foundation of China (20080404MS)
文摘In order to research the influence of La2O3 on crystallization behavior of free-fluoride mould flux and the heat transfer of slag film,free-fluoride mould flux with various La2O3 content were investigated by using self-made mould simulator,comprehensive thermal analyzer and SEM-EDS.With the increase of La2O3 content from 0% to 20%,the crystallization ratios of mould flux films were improved from 2% to 90% and the thicknesses of films were also enhanced over two times.Moreover,crystallization temperature was greatly raised and its increasing extent reached 100 oC.It could also decrease the melting temperature of casting powder about 50 oC.However,the undissolved La2O3 particles appeared in slag film if the ratio of La2O3 in free-fluoride mould flux was much too high.
文摘In order to solve the problem of the high surface longitudinal crack ratio of heavy peritectic steel slabs produced by the No. 3 continuous caster at Baosteel,the physical properties of the original mold flux and the optimized mold flux were compared in a comprehensive way by using analytical measures, such as a slag film heat-flow simulator, a thermowire molten flux crystallization tester and an X-ray diffractometer in the laboratory. The results reveal that one of the major reasons for the cracks is the poor heat transfer ability of the original mold flux. However, the optimized mold flux with a high basicity features a high crystallizing rate,low crystallization temperature and low heat-flow density. Therefore, the optimized mold flux is more suitable for casting peritectic steel by the heavy slab continuous caster. The test results show that the slabs produced by using the optimized mold flux had no surface longitudinal crack in four test casts, while the surface longitudinal crack ratio of the slabs produced by using the original mold flux was 5%. The optimized mold flux can effectively prevent slab surface longitudinal cracks from occurring.
文摘Indium tin oxide(ITO)heating film is primarily used as the defogging component of an instrument observation window.Conventionally,a constant current is used to heat the film.Through the feedback of the temperature sensing component,the output current is adjusted to achieve a set temperature.However,the temperature of the heating film is nonuniformly distributed,and determining the correct output current is time-consuming.This study adopted finite element heat transfer analysis to determine a heating method(such as heat power and heat flux)for an ITO conductive heating film system.The results of the analysis may serve as a reference for temperature compensation in ITO conductive heating films.
基金Item Sponsored by National Natural Science Foundation of China (50574109)
文摘An experimental apparatus for simulating copper mold is used to quantify the heat flux through the slag film and to obtain a solid slag for further determining its crystallization behavior. The result indicates that both the chemical composition of the mold powder and the cooling rate have an important influence on the heat flux through the slag film. With increasing the binary basicity, the heat flux of slag film decreases at first, reaches the minimum at the basicity of 1.4, and then increases, indicating that the maximum binary basicity is about 1.4 for selecting "mild cooling" mold powder. The heat transfer through the slag film can be specified in terms of the crystalline ratio and the thickness of the slag film. Recrystallization of the solid slag occurs and must be considered as an important factor that may influence the heat transfer through the solid slag layer.