Aim: To investigate the effect of abrogating heat shock protein (HSP) 70 expression by antisense HSP70 oligonucleotides treatment on human androgen-independent prostate cancer cell line PC-3m growth. Methods: PC-3m ce...Aim: To investigate the effect of abrogating heat shock protein (HSP) 70 expression by antisense HSP70 oligonucleotides treatment on human androgen-independent prostate cancer cell line PC-3m growth. Methods: PC-3m cells were treated with 0-16 μmol/L antisense HSP70 oligomers for 0-100 hr. Cell growth inhibition was analyzed using a trypan blue dye exclusion test. Apoptotic cells were detected and confirmed by flow cytometric analysis and DNA fragmentation analysis. The protein expression of HSP70 and bcl-2 affected by antisense HSP70 oligomers were determined using Western blot. Results: Antisense HSP70 oligomer induced apoptosis and then inhibited proliferation of PC-3m cells in a dose- and time-dependent manner. Ladder-like patterns of DNA fragments were observed in PC-3m cells treated with 10 μmol/L antisense HSP70 oligomer for 48 hr or 8 μmol/L for 72 hr on agarose gel electrophoresis. Antisense HSP70 oligomer pretreatment enhanced the subsequent induction of apoptosis by heat shock in PC-3m cells. In addition, undetectable HSP70 expression was observed at a concentration of 10 μmol/L antisense HSP70 oligomer treatment for 48 hr or 8 μmol/L for 72 hr in Western blot, which was paralleled by decreased expression levels of anti-apoptotic protein bcl-2. Conclusion: HSP70 antisense oligomer treatment abrogates the expression of HSP70, which may disrupt HSP70-bcl-2-interactions and further down-regulate bcl-2 expression, in turn inducing apoptosis and inhibiting cell growth in PC-3m cells.展开更多
Thermal adaptation plays a fundamental role in shaping the distribution and abundance of insects,and heat shock proteins(Hsps)play important roles in the temperature adaptation of various organisms.To better underst...Thermal adaptation plays a fundamental role in shaping the distribution and abundance of insects,and heat shock proteins(Hsps)play important roles in the temperature adaptation of various organisms.To better understand the temperature tolerance of the indigenous ZHJ2-biotype of whitefly Bemisia tabaci species complex,we obtained complete cDNA sequences for hsp90,hsp70,and hsp20 and analyzed their expression profiles under different high temperature treatments by real-time quantitative polymerase chain reaction.The high temperature tolerance of B.tabaci ZHJ2-biotype was determined by survival rate after exposure to different high temperatures for 1 h.The results showed that after 41°C heat-shock treatment for 1 h,the survival rates of ZHJ2 adults declined significantly and the estimated temperature required to cause 50% mortality(LT50)is 42.85°C for 1 h.Temperatures for onset(Ton)or maximal(Tmax)induction of hsps expression in B.tabaci ZHJ2-biotype were 35 and 39°C(or 41°C).Compared with previous studies,indigenous ZHJ2-biotype exhibits lower heat temperature stress tolerance and Ton(or Tmax)than the invasive B-biotype.展开更多
This article is to summarize the molecular and functional analysis of the gene “suppression of tumorigenicity 13” (ST13). ST13 is in fact the gene encoding Hsp70 interacting protein (Hip), a co-factor (co-chaperone)...This article is to summarize the molecular and functional analysis of the gene “suppression of tumorigenicity 13” (ST13). ST13 is in fact the gene encoding Hsp70 interacting protein (Hip), a co-factor (co-chaperone) of the 70-kDa heat shock proteins (Hsc/Hsp70). By collaborating with other positive co-factors such as Hsp40 and the Hsp70-Hsp90 organizing protein (Hop), or competing with negative co-factors such as Bcl2-associated athanogen 1 (Bag1), Hip facilitates may facilitate the chaperone function of Hsc/Hsp70 in protein folding and repair, and in controlling the activity of regulatory proteins such as steroid receptors and regulators of proliferation or apoptosis. Although the nomenclature of ST13 implies a role in the suppression of tumorigenicity (ST), to date available experimental data are not sufficient to support its role in cancer development, except for the possible down-regulation of ST13 in gastric and colorectal cancers. Further investigation of this gene at the physiological level would benefit our understanding of diseases such as endocrinological disorders, cancer, and neurodegeneration commonly associated with protein misfolding.展开更多
Background: We investigated the effect of a small molecular inhibitor of heat shock protein (HSP), qnercetin, on tumor radiofrequency (RF) ablation, and explored the underlying molecular mechanisms. Methods: In ...Background: We investigated the effect of a small molecular inhibitor of heat shock protein (HSP), qnercetin, on tumor radiofrequency (RF) ablation, and explored the underlying molecular mechanisms. Methods: In in vivo study, rats with R3230 breast adenocarcinoma were sacrificed 24 h post-treatment and gross coagulation areas were compared, and next, randomized into four treatment arms (control, quercetin alone, RF alone, and combination) for Kaplan-Meier analysis of defined endpoint survival. Then the distribution and expression levels of heat shock protein 70 (HSP70), cleaved caspase-3 and heat shock factor 1 (HSF1) were analyzed after different treatments. In in vitro study, we used quercetin to promote SK- HEP-I (hepatic) and MCF-7 (breast) cancer cell apoptosis in heat shock cell model, and siRNA was used to block c-Jun and to explore the role of activating protein-1 (AP-1) signaling pathways. Results: We found the effects of quercetin plus RFA resulted in increase on the tumor destruction/ endpoint survival (26.5±3.4 d) in vivo, compared with RF alone (17.6±2.5 d) and quercetin alone (15.7±3.1 d). Most importantly, quercetin-induced cancer cell death required the presence of HSF1 in animal model. Furthermore, quercetin directly down-regulated expression of HSF1 in vitro, which our findings have revealed, required the activation of AP-1 signaling pathways by loss-of-function analysis using siRNA mediated targeting of c-Jun. Conclusions: These results indicated a protective role of quercetin in tumor ablation and highlighted a novel mechanism involving HSP70 with HSF1 pathway in thermal ablation of solid tumors.展开更多
The regulation of heat shock transcription factor to heat shock protein expression and the newest knowledge about the effect of heat shock protein on aging,immune response and the balance of cell survival and apoptosi...The regulation of heat shock transcription factor to heat shock protein expression and the newest knowledge about the effect of heat shock protein on aging,immune response and the balance of cell survival and apoptosis are summarized in the paper.展开更多
OBJECTIVE: To study the efficacy and explore the mechanism of the anti-tumor immunity elicited by heat shock protein 70-peptide complexes (HSP70-PC) derived from tumor cells. METHODS: Cells culture, flow cytometric an...OBJECTIVE: To study the efficacy and explore the mechanism of the anti-tumor immunity elicited by heat shock protein 70-peptide complexes (HSP70-PC) derived from tumor cells. METHODS: Cells culture, flow cytometric analysis, affinity chromatography for protein purification, SDS-PAGE, Western-blotting and animal experiment were used. RESULTS: HSP70-PC immunization rendered protective effect to both naive tumorl-bearing mice. All of the naive mice obtained complete resistance to Hcaf cell attack; 40% of the tumor-bearing mice survived for over 90 days, whereas the mice of control group died within 2 weeks (P展开更多
Heat shock proteins (HSPs) are reported to act as effective adjuvants to elicit anti-tumor and anti-infection immunity. Here, we report that Hsp70-like protein 1 (Hsp70L1), a novel HSP derived from human dendritic cel...Heat shock proteins (HSPs) are reported to act as effective adjuvants to elicit anti-tumor and anti-infection immunity. Here, we report that Hsp70-like protein 1 (Hsp70L1), a novel HSP derived from human dendritic cells (DCs), has potent adjuvant effects that polarize responses toward Th1. With a calculated molecular weight of 54.8 kDa, Hsp70L1 is smaller in size than Hsp70 but resembles it both structurally and functionally. Hsp70L1 shares common receptors on DCs with Hsp70 and can interact with DCs, promoting DC maturation and stimulating secretion of the proinflammatory cytokines interleukin 12p70 (IL-12p70), IL-1beta, tumor necrosis factor-alpha (TNF-alpha), and the chemokines IP-10, macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, and normal T cell expressed and secreted (RANTES). The induction of interferon-gamma-inducible protein 10 (IP-10) secretion by Hsp70L1 is not shared by Hsp70, and other functional differences include more potent stimulation of DC IL-12p70, CC-chemokine, and CCR7 and CXCR4 expression by Hsp70L1. Immunization of mice with the hybrid peptide Hsp70L1-ovalbumin(OVA)(257-264) induces an OVA(257-264)-specific Th1 response and cytotoxic T lymphocyte (CTL) that results in significant inhibition of E.G7-OVA tumor growth. The ability of Hsp70L1 to activate DCs indicates its potential as a novel adjuvant for use with peptide immunizations; the Hsp70L1 antigen peptide hybrid may serve as a more effective vaccine for the control of cancer and infectious diseases.展开更多
Objective: To investigate whether human dendritic cells (DC) derived from peripheral blood mononuclear cells (PBMC), which were pulsed by heat shock protein 70 (HSP70) isolated from human bladder tumor cell lin...Objective: To investigate whether human dendritic cells (DC) derived from peripheral blood mononuclear cells (PBMC), which were pulsed by heat shock protein 70 (HSP70) isolated from human bladder tumor cell lines of E J, were able to induce peptide specific cytotoxic T-lymphocytes (CTL) response in vitro and give the experimental foundation for the future clinical trials of immunotherapy in bladder tumor. Methods: The E J-derived HSP70 co-cultured with DC from the healthy volunteers' PBMC, along with the crude lysate (the supematant before HSP70 purification) from EJ cells were used as the experimental groups and DC not pulsed by any tumor cells antigen were the blank control. The autologous T-lymphocytes were added into the above various DC groups, and after incubation, the stimulation indexes (SI) and interferon-y (IFN-γ) were detected to evaluate the immune activities of various DC groups. The killing effects of CTL to target cells, EJ and Hela cells, were determined with 51^Cr releasing test. Results: Both DC/HSP70 and DC/the crude lysate could effectively activate CTL in vitro and kill target cells EJ. The killing effect of DC/HSP70 to EJ was much stronger than DC/the crude lysate (the supernatant before HSP70 purification) (P 〈 0.05). DC without any tumor cell antigens had a lower killing power to EJ. Meanwhile, DC/ HSP70 had little killing power to Hela non-relevant to bladder tumor histopathologically as compared with EJ cells (P 〈 0.05). Conclusion: The DC pulsed by HSP70 derived from the autologous tumor cells could induce a peptide complexes specific CTL response to tumor cells, and the CTL response induced by the DC/HSP70 was stronger, which display the basis of the possible clinical application of DC/HSP70 for bladder tumor.展开更多
Heat shock proteins (HSPs) serve to correct proteins’ conformation, send the damaged proteins for degradation (quality control function). Heat shock factors (HSFs) are their transcription factors. The protein complex...Heat shock proteins (HSPs) serve to correct proteins’ conformation, send the damaged proteins for degradation (quality control function). Heat shock factors (HSFs) are their transcription factors. The protein complexes mTOR1 and 2 (with the same core mTOR), the phosphoinositide-dependent protein kinase-1 (PDK1), the seine/threonine-specific protein kinase (Akt), HSF1, plus their associated proteins form a network participating in protein synthesis, bio-energy generation, signaling for apoptosis with the help of HSPs. A cancer cell synthesizes proteins at fast rate and needs more HSPs to work on quality control. Shutting down this network would lead to cell death. Thus inhibitors of mTOR (mTORI) and inhibitors of HSPs (HSPI) could drive cancer cell to apoptosis—a “passive approach”. On the other hand, HSPs form complexes with polypeptides characteristic of the cancer cells;on excretion from the cell, they becomes antigens for the immunity cells, eventually leading to maturation of the cytotoxic T cells, forming the basic principle of preparing cancer-specific, person-specific vaccine. Recent finding shows that HSP70 can penetrate cancer cell and expel its analog to extracellular region, giving the hope to prepare a non-person-specific vaccine covering a variety of cancers. Activation of anti-cancer immunity is the “active approach”. On the other hand, mild hyperthermia, with increase of intracellular HSPs, has been found to activate the immunity response, and demonstrate anti-cancer effects. There are certain “mysteries” behind the mechanisms of the active and passive approaches. We analyze the mechanisms involved and provide explanations to some mysteries. We also suggest future research to improve our understanding of these two approaches, in which HSPs play many roles.展开更多
To study the acupuncture effects on the inducible nitric oxide synthase (iNOS) mRNA,iNOS product and heat shock protein(hsp) 70 in the mouse macrophages, after peritoneal stimulation with steriled paraffin oil for 48 ...To study the acupuncture effects on the inducible nitric oxide synthase (iNOS) mRNA,iNOS product and heat shock protein(hsp) 70 in the mouse macrophages, after peritoneal stimulation with steriled paraffin oil for 48 h, 24 Kunming mice were randomly divided into 3 groups: a, electroacupuncture (EA) groupl treated with EA; b, control 1 (C 1) group, peritoneal macrophages treated with culture; and c, control 2 (C 2) group, treated with neither EA nor culture. The macrophages of mice in 3 groups collected from respective peritoneal cavities were prepared into two kinds of specimens, including slide and nitrocellulose membrane (NCM). The iNOS mRNA, iNOS and hsp 70 were detected respectively with in situ hybridization, cytochemistry, immunohistochemistry and RNA and protein dot blots. The results showed that the signals of iNOS mRNA and iNOS product were localized in the macrophage cytoplasm; the immunoreactivity(IR) of hsp 70 localized in both cytoplasm and nucleus. The dot blot signal scanning value of those in 3 groups in comparison with each other showed as follows: EA group>C 2 group>C 1 group, (P<0.01).展开更多
Heat shock proteins 10/60(hsp10/60)are a family of conserved ubiquitously expressed heat shock proteins which are produced by cells in response to exposure to stressful conditions.Besides the chaperone and housekeepin...Heat shock proteins 10/60(hsp10/60)are a family of conserved ubiquitously expressed heat shock proteins which are produced by cells in response to exposure to stressful conditions.Besides the chaperone and housekeeping functions,they are also known to be involved in immune response during bacterial infection.In this study,we identified and annotated 10 hsp10/60 genes through bioinformatic analysis in Japanese flounder(Paralichthys olivaceus).Among them one member of hsp10(hspe)family and nine members of hsp60(hspd)family were identified.Phylogenetic and selection pressure analysis showed that the hsp10/60 genes were evolutionarily constrained and their function was conserved.Besides,hsp10/60 genes were involved in different embryonic and larval stages and acted as the sentinel role in an unchallenged organism.In addition,we also observed the expression patterns of hsp10/60 genes after Edwardsiella tarda infection,for the first time in Japanese flounder.Eight out of 10 genes were differentially expressed after bacterial challenges,the significantly regulated expressions of flounder hsp10/60 genes after bacterial infections suggested their involvement in immune response in flounder.Our results provide valuable information for clarifying the evolutionary relationship,and early insights of the immune functions of hsp10/60 genes in Japanese flounder.展开更多
Objective The aim of this study was to enhance the treatment effect of tumor purified autogenous heat shock protein 70-peptide complexes(HSP70-PCs)on HER-3-overexpressing breast cancer.Methods In this study,we first s...Objective The aim of this study was to enhance the treatment effect of tumor purified autogenous heat shock protein 70-peptide complexes(HSP70-PCs)on HER-3-overexpressing breast cancer.Methods In this study,we first studied the expression of HER-3 in breast cancer tissues and its relationship with patient characteristics.We then purified HSP70-PCs from primary breast cancer cells with different HER-2 and HER-3 expression profiles and determined the cytotoxicity of autogenous dendritic cells(DCs)and CD8+T cells induced by these complexes.Third,recombinant human HSP70-HER-3 protein complexes were used to inhibit the autogenous HSP70-PCs purified from HER-3-overexpressing breast cancer cells,and the resulting immunological response was examined.Results The results show that HSP70-PCs can be combined with recombinant HSP70-HER-3 protein complexes to induce stronger immunological responses than autogenous HSP70-PCs alone and that these treatments induce autogenous CD8+T cell killing of HER-3-positive breast cancer cells.Conclusion These findings provide a new direction for HSP70-DC-based immunotherapy for patients with HER-3-overexpressing breast cancer.展开更多
Being one of the most abundant intracellular proteins, heat shock proteins (HSPs) have many housekeeping functions which are crucial for the survival of organisms. In addition, some HSPs are new immunoactive molecules...Being one of the most abundant intracellular proteins, heat shock proteins (HSPs) have many housekeeping functions which are crucial for the survival of organisms. In addition, some HSPs are new immunoactive molecules which play important roles in both adaptive and innate immunity. They could activate CD8 + and CD4 + lymphocytes, induce innate immune response including natural killer (NK) cell activation and cytokine secretion, and induce maturation of dendritic cells (DCs). These characteristics have been used for immunotherapy of various types of cancers and infectious diseases. This review focuses on the main HSP families——HSP70 and 90 families. The mechanism of HSPs′ function in eliciting immune response are elucidated and various forms of HSPs used in immunotherapy are discussed in details. At the end of this review, authors summarize clinical trials related to HSPs and evaluate their clinical efficacy.展开更多
A study was conducted on the molecular mechanism of small heat shock proteins (sHSPs) in Chaetomium globosum. Heat shock protein 22.4 (Hsp22.4) from C. globosum was cloned and expressed in Escherichia coli. BlastX...A study was conducted on the molecular mechanism of small heat shock proteins (sHSPs) in Chaetomium globosum. Heat shock protein 22.4 (Hsp22.4) from C. globosum was cloned and expressed in Escherichia coli. BlastX analysis revealed that the Hsp22.4 gene from C. globosum shared the highest identity in amino acid sequence with a Hsp gene from Neurospora crassa, and the identity between them was 65%. The C. globosum Hsp22.4 gene was inserted into the expressive vector of pGEX-4T-2 and the recombinant plasmid named pGEX-HSE E. coli BL21 transformed with pGEX-HSP plasmid was induced by IPTG, and the expressed proteins were analyzed with SDS-PAGE. A 50 kD protein was specially expressed in E. coli BL21, and the result was consistent with expectation, and showed that the Hsp22.4 gene had been expressed in E. coli. Our study has made a foundation for further studying the function ofsHSPs protein.展开更多
Ultraviolet radiation by its wavelength is divided into: UVA, UVB and UVC. Only UVA and UVB manage to penetrate the ozone layer, but due to anthropological activities, all of them are capable of interacting with human...Ultraviolet radiation by its wavelength is divided into: UVA, UVB and UVC. Only UVA and UVB manage to penetrate the ozone layer, but due to anthropological activities, all of them are capable of interacting with humans to a greater or lesser extent, and can generate adverse effects such as cellular stress when interacting with intra-and extracellular biomolecules. The skin is the first organ in contact with UV radiation, and the stress it generates can be analyzed by the expression of a bioindicator of cellular damage such as Hsp70. Therefore, the objective of the project was: to determine the effect of UVA, UVB and UVC radiation on HaCaT epithelial cells, by analyzing the expression of Hsp70. Materials and methods: HaCaT cells were cultured in vitro, which were irradiated with UVA, UVB and UVC light at different doses, to subsequently determine the degree of Hsp70 expression by Immunodetection by PAGE-SDS and Western Blot. Results: Basal expression of Hsp70 was observed in no irradiated HaCaT cells. When HaCaT cells were irradiated with UVA, UVB, UVC, an increase in this Hsp70 protein was observed. With UVA, a higher degree of expression was observed at a time of 30 minutes of irradiation. With UVB the highest expression shifted to a time of 20 minutes. With UVC, overexpression was observed after 10 minutes. Conclusion: UV radiation generates cellular stress on HaCaT cells, evaluated by the stress bioindicator Hsp70. According to the wavelength of UV radiation, those that have a shorter wavelength have a greater potential for cellular damage, such as UVC.展开更多
文摘Aim: To investigate the effect of abrogating heat shock protein (HSP) 70 expression by antisense HSP70 oligonucleotides treatment on human androgen-independent prostate cancer cell line PC-3m growth. Methods: PC-3m cells were treated with 0-16 μmol/L antisense HSP70 oligomers for 0-100 hr. Cell growth inhibition was analyzed using a trypan blue dye exclusion test. Apoptotic cells were detected and confirmed by flow cytometric analysis and DNA fragmentation analysis. The protein expression of HSP70 and bcl-2 affected by antisense HSP70 oligomers were determined using Western blot. Results: Antisense HSP70 oligomer induced apoptosis and then inhibited proliferation of PC-3m cells in a dose- and time-dependent manner. Ladder-like patterns of DNA fragments were observed in PC-3m cells treated with 10 μmol/L antisense HSP70 oligomer for 48 hr or 8 μmol/L for 72 hr on agarose gel electrophoresis. Antisense HSP70 oligomer pretreatment enhanced the subsequent induction of apoptosis by heat shock in PC-3m cells. In addition, undetectable HSP70 expression was observed at a concentration of 10 μmol/L antisense HSP70 oligomer treatment for 48 hr or 8 μmol/L for 72 hr in Western blot, which was paralleled by decreased expression levels of anti-apoptotic protein bcl-2. Conclusion: HSP70 antisense oligomer treatment abrogates the expression of HSP70, which may disrupt HSP70-bcl-2-interactions and further down-regulate bcl-2 expression, in turn inducing apoptosis and inhibiting cell growth in PC-3m cells.
基金supported by the National Basic R&D Program of China(2009CB119200)the National Natural Science Foundation of China(30800722)
文摘Thermal adaptation plays a fundamental role in shaping the distribution and abundance of insects,and heat shock proteins(Hsps)play important roles in the temperature adaptation of various organisms.To better understand the temperature tolerance of the indigenous ZHJ2-biotype of whitefly Bemisia tabaci species complex,we obtained complete cDNA sequences for hsp90,hsp70,and hsp20 and analyzed their expression profiles under different high temperature treatments by real-time quantitative polymerase chain reaction.The high temperature tolerance of B.tabaci ZHJ2-biotype was determined by survival rate after exposure to different high temperatures for 1 h.The results showed that after 41°C heat-shock treatment for 1 h,the survival rates of ZHJ2 adults declined significantly and the estimated temperature required to cause 50% mortality(LT50)is 42.85°C for 1 h.Temperatures for onset(Ton)or maximal(Tmax)induction of hsps expression in B.tabaci ZHJ2-biotype were 35 and 39°C(or 41°C).Compared with previous studies,indigenous ZHJ2-biotype exhibits lower heat temperature stress tolerance and Ton(or Tmax)than the invasive B-biotype.
基金Project supported by the National Basic Research Program (973) of China (No. 2004CB518707)the National Natureal Science Foundation of China (No. 30400521)
文摘This article is to summarize the molecular and functional analysis of the gene “suppression of tumorigenicity 13” (ST13). ST13 is in fact the gene encoding Hsp70 interacting protein (Hip), a co-factor (co-chaperone) of the 70-kDa heat shock proteins (Hsc/Hsp70). By collaborating with other positive co-factors such as Hsp40 and the Hsp70-Hsp90 organizing protein (Hop), or competing with negative co-factors such as Bcl2-associated athanogen 1 (Bag1), Hip facilitates may facilitate the chaperone function of Hsc/Hsp70 in protein folding and repair, and in controlling the activity of regulatory proteins such as steroid receptors and regulators of proliferation or apoptosis. Although the nomenclature of ST13 implies a role in the suppression of tumorigenicity (ST), to date available experimental data are not sufficient to support its role in cancer development, except for the possible down-regulation of ST13 in gastric and colorectal cancers. Further investigation of this gene at the physiological level would benefit our understanding of diseases such as endocrinological disorders, cancer, and neurodegeneration commonly associated with protein misfolding.
基金supported by the National Natural Science Foundation of China (Commission No. 81471768)supported by Beijing Municipal Health System Special Funds of High-Level Medical Personnel Construction (No. 2013-3-086)
文摘Background: We investigated the effect of a small molecular inhibitor of heat shock protein (HSP), qnercetin, on tumor radiofrequency (RF) ablation, and explored the underlying molecular mechanisms. Methods: In in vivo study, rats with R3230 breast adenocarcinoma were sacrificed 24 h post-treatment and gross coagulation areas were compared, and next, randomized into four treatment arms (control, quercetin alone, RF alone, and combination) for Kaplan-Meier analysis of defined endpoint survival. Then the distribution and expression levels of heat shock protein 70 (HSP70), cleaved caspase-3 and heat shock factor 1 (HSF1) were analyzed after different treatments. In in vitro study, we used quercetin to promote SK- HEP-I (hepatic) and MCF-7 (breast) cancer cell apoptosis in heat shock cell model, and siRNA was used to block c-Jun and to explore the role of activating protein-1 (AP-1) signaling pathways. Results: We found the effects of quercetin plus RFA resulted in increase on the tumor destruction/ endpoint survival (26.5±3.4 d) in vivo, compared with RF alone (17.6±2.5 d) and quercetin alone (15.7±3.1 d). Most importantly, quercetin-induced cancer cell death required the presence of HSF1 in animal model. Furthermore, quercetin directly down-regulated expression of HSF1 in vitro, which our findings have revealed, required the activation of AP-1 signaling pathways by loss-of-function analysis using siRNA mediated targeting of c-Jun. Conclusions: These results indicated a protective role of quercetin in tumor ablation and highlighted a novel mechanism involving HSP70 with HSF1 pathway in thermal ablation of solid tumors.
文摘The regulation of heat shock transcription factor to heat shock protein expression and the newest knowledge about the effect of heat shock protein on aging,immune response and the balance of cell survival and apoptosis are summarized in the paper.
文摘OBJECTIVE: To study the efficacy and explore the mechanism of the anti-tumor immunity elicited by heat shock protein 70-peptide complexes (HSP70-PC) derived from tumor cells. METHODS: Cells culture, flow cytometric analysis, affinity chromatography for protein purification, SDS-PAGE, Western-blotting and animal experiment were used. RESULTS: HSP70-PC immunization rendered protective effect to both naive tumorl-bearing mice. All of the naive mice obtained complete resistance to Hcaf cell attack; 40% of the tumor-bearing mice survived for over 90 days, whereas the mice of control group died within 2 weeks (P
文摘Heat shock proteins (HSPs) are reported to act as effective adjuvants to elicit anti-tumor and anti-infection immunity. Here, we report that Hsp70-like protein 1 (Hsp70L1), a novel HSP derived from human dendritic cells (DCs), has potent adjuvant effects that polarize responses toward Th1. With a calculated molecular weight of 54.8 kDa, Hsp70L1 is smaller in size than Hsp70 but resembles it both structurally and functionally. Hsp70L1 shares common receptors on DCs with Hsp70 and can interact with DCs, promoting DC maturation and stimulating secretion of the proinflammatory cytokines interleukin 12p70 (IL-12p70), IL-1beta, tumor necrosis factor-alpha (TNF-alpha), and the chemokines IP-10, macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, and normal T cell expressed and secreted (RANTES). The induction of interferon-gamma-inducible protein 10 (IP-10) secretion by Hsp70L1 is not shared by Hsp70, and other functional differences include more potent stimulation of DC IL-12p70, CC-chemokine, and CCR7 and CXCR4 expression by Hsp70L1. Immunization of mice with the hybrid peptide Hsp70L1-ovalbumin(OVA)(257-264) induces an OVA(257-264)-specific Th1 response and cytotoxic T lymphocyte (CTL) that results in significant inhibition of E.G7-OVA tumor growth. The ability of Hsp70L1 to activate DCs indicates its potential as a novel adjuvant for use with peptide immunizations; the Hsp70L1 antigen peptide hybrid may serve as a more effective vaccine for the control of cancer and infectious diseases.
基金Supported by a grant from the National Natural Science Foundation of China (No. 3000754).
文摘Objective: To investigate whether human dendritic cells (DC) derived from peripheral blood mononuclear cells (PBMC), which were pulsed by heat shock protein 70 (HSP70) isolated from human bladder tumor cell lines of E J, were able to induce peptide specific cytotoxic T-lymphocytes (CTL) response in vitro and give the experimental foundation for the future clinical trials of immunotherapy in bladder tumor. Methods: The E J-derived HSP70 co-cultured with DC from the healthy volunteers' PBMC, along with the crude lysate (the supematant before HSP70 purification) from EJ cells were used as the experimental groups and DC not pulsed by any tumor cells antigen were the blank control. The autologous T-lymphocytes were added into the above various DC groups, and after incubation, the stimulation indexes (SI) and interferon-y (IFN-γ) were detected to evaluate the immune activities of various DC groups. The killing effects of CTL to target cells, EJ and Hela cells, were determined with 51^Cr releasing test. Results: Both DC/HSP70 and DC/the crude lysate could effectively activate CTL in vitro and kill target cells EJ. The killing effect of DC/HSP70 to EJ was much stronger than DC/the crude lysate (the supernatant before HSP70 purification) (P 〈 0.05). DC without any tumor cell antigens had a lower killing power to EJ. Meanwhile, DC/ HSP70 had little killing power to Hela non-relevant to bladder tumor histopathologically as compared with EJ cells (P 〈 0.05). Conclusion: The DC pulsed by HSP70 derived from the autologous tumor cells could induce a peptide complexes specific CTL response to tumor cells, and the CTL response induced by the DC/HSP70 was stronger, which display the basis of the possible clinical application of DC/HSP70 for bladder tumor.
文摘Heat shock proteins (HSPs) serve to correct proteins’ conformation, send the damaged proteins for degradation (quality control function). Heat shock factors (HSFs) are their transcription factors. The protein complexes mTOR1 and 2 (with the same core mTOR), the phosphoinositide-dependent protein kinase-1 (PDK1), the seine/threonine-specific protein kinase (Akt), HSF1, plus their associated proteins form a network participating in protein synthesis, bio-energy generation, signaling for apoptosis with the help of HSPs. A cancer cell synthesizes proteins at fast rate and needs more HSPs to work on quality control. Shutting down this network would lead to cell death. Thus inhibitors of mTOR (mTORI) and inhibitors of HSPs (HSPI) could drive cancer cell to apoptosis—a “passive approach”. On the other hand, HSPs form complexes with polypeptides characteristic of the cancer cells;on excretion from the cell, they becomes antigens for the immunity cells, eventually leading to maturation of the cytotoxic T cells, forming the basic principle of preparing cancer-specific, person-specific vaccine. Recent finding shows that HSP70 can penetrate cancer cell and expel its analog to extracellular region, giving the hope to prepare a non-person-specific vaccine covering a variety of cancers. Activation of anti-cancer immunity is the “active approach”. On the other hand, mild hyperthermia, with increase of intracellular HSPs, has been found to activate the immunity response, and demonstrate anti-cancer effects. There are certain “mysteries” behind the mechanisms of the active and passive approaches. We analyze the mechanisms involved and provide explanations to some mysteries. We also suggest future research to improve our understanding of these two approaches, in which HSPs play many roles.
文摘To study the acupuncture effects on the inducible nitric oxide synthase (iNOS) mRNA,iNOS product and heat shock protein(hsp) 70 in the mouse macrophages, after peritoneal stimulation with steriled paraffin oil for 48 h, 24 Kunming mice were randomly divided into 3 groups: a, electroacupuncture (EA) groupl treated with EA; b, control 1 (C 1) group, peritoneal macrophages treated with culture; and c, control 2 (C 2) group, treated with neither EA nor culture. The macrophages of mice in 3 groups collected from respective peritoneal cavities were prepared into two kinds of specimens, including slide and nitrocellulose membrane (NCM). The iNOS mRNA, iNOS and hsp 70 were detected respectively with in situ hybridization, cytochemistry, immunohistochemistry and RNA and protein dot blots. The results showed that the signals of iNOS mRNA and iNOS product were localized in the macrophage cytoplasm; the immunoreactivity(IR) of hsp 70 localized in both cytoplasm and nucleus. The dot blot signal scanning value of those in 3 groups in comparison with each other showed as follows: EA group>C 2 group>C 1 group, (P<0.01).
基金This work was supported by the National Key Research and Development Program of China(No.2018YFD0900601)the Natural Science Foundation of Shandong Province(No.ZR2017MC072).
文摘Heat shock proteins 10/60(hsp10/60)are a family of conserved ubiquitously expressed heat shock proteins which are produced by cells in response to exposure to stressful conditions.Besides the chaperone and housekeeping functions,they are also known to be involved in immune response during bacterial infection.In this study,we identified and annotated 10 hsp10/60 genes through bioinformatic analysis in Japanese flounder(Paralichthys olivaceus).Among them one member of hsp10(hspe)family and nine members of hsp60(hspd)family were identified.Phylogenetic and selection pressure analysis showed that the hsp10/60 genes were evolutionarily constrained and their function was conserved.Besides,hsp10/60 genes were involved in different embryonic and larval stages and acted as the sentinel role in an unchallenged organism.In addition,we also observed the expression patterns of hsp10/60 genes after Edwardsiella tarda infection,for the first time in Japanese flounder.Eight out of 10 genes were differentially expressed after bacterial challenges,the significantly regulated expressions of flounder hsp10/60 genes after bacterial infections suggested their involvement in immune response in flounder.Our results provide valuable information for clarifying the evolutionary relationship,and early insights of the immune functions of hsp10/60 genes in Japanese flounder.
基金Supported by a grant from the National Natural Science Foundation of China(No.81260392).
文摘Objective The aim of this study was to enhance the treatment effect of tumor purified autogenous heat shock protein 70-peptide complexes(HSP70-PCs)on HER-3-overexpressing breast cancer.Methods In this study,we first studied the expression of HER-3 in breast cancer tissues and its relationship with patient characteristics.We then purified HSP70-PCs from primary breast cancer cells with different HER-2 and HER-3 expression profiles and determined the cytotoxicity of autogenous dendritic cells(DCs)and CD8+T cells induced by these complexes.Third,recombinant human HSP70-HER-3 protein complexes were used to inhibit the autogenous HSP70-PCs purified from HER-3-overexpressing breast cancer cells,and the resulting immunological response was examined.Results The results show that HSP70-PCs can be combined with recombinant HSP70-HER-3 protein complexes to induce stronger immunological responses than autogenous HSP70-PCs alone and that these treatments induce autogenous CD8+T cell killing of HER-3-positive breast cancer cells.Conclusion These findings provide a new direction for HSP70-DC-based immunotherapy for patients with HER-3-overexpressing breast cancer.
文摘Being one of the most abundant intracellular proteins, heat shock proteins (HSPs) have many housekeeping functions which are crucial for the survival of organisms. In addition, some HSPs are new immunoactive molecules which play important roles in both adaptive and innate immunity. They could activate CD8 + and CD4 + lymphocytes, induce innate immune response including natural killer (NK) cell activation and cytokine secretion, and induce maturation of dendritic cells (DCs). These characteristics have been used for immunotherapy of various types of cancers and infectious diseases. This review focuses on the main HSP families——HSP70 and 90 families. The mechanism of HSPs′ function in eliciting immune response are elucidated and various forms of HSPs used in immunotherapy are discussed in details. At the end of this review, authors summarize clinical trials related to HSPs and evaluate their clinical efficacy.
文摘A study was conducted on the molecular mechanism of small heat shock proteins (sHSPs) in Chaetomium globosum. Heat shock protein 22.4 (Hsp22.4) from C. globosum was cloned and expressed in Escherichia coli. BlastX analysis revealed that the Hsp22.4 gene from C. globosum shared the highest identity in amino acid sequence with a Hsp gene from Neurospora crassa, and the identity between them was 65%. The C. globosum Hsp22.4 gene was inserted into the expressive vector of pGEX-4T-2 and the recombinant plasmid named pGEX-HSE E. coli BL21 transformed with pGEX-HSP plasmid was induced by IPTG, and the expressed proteins were analyzed with SDS-PAGE. A 50 kD protein was specially expressed in E. coli BL21, and the result was consistent with expectation, and showed that the Hsp22.4 gene had been expressed in E. coli. Our study has made a foundation for further studying the function ofsHSPs protein.
文摘Ultraviolet radiation by its wavelength is divided into: UVA, UVB and UVC. Only UVA and UVB manage to penetrate the ozone layer, but due to anthropological activities, all of them are capable of interacting with humans to a greater or lesser extent, and can generate adverse effects such as cellular stress when interacting with intra-and extracellular biomolecules. The skin is the first organ in contact with UV radiation, and the stress it generates can be analyzed by the expression of a bioindicator of cellular damage such as Hsp70. Therefore, the objective of the project was: to determine the effect of UVA, UVB and UVC radiation on HaCaT epithelial cells, by analyzing the expression of Hsp70. Materials and methods: HaCaT cells were cultured in vitro, which were irradiated with UVA, UVB and UVC light at different doses, to subsequently determine the degree of Hsp70 expression by Immunodetection by PAGE-SDS and Western Blot. Results: Basal expression of Hsp70 was observed in no irradiated HaCaT cells. When HaCaT cells were irradiated with UVA, UVB, UVC, an increase in this Hsp70 protein was observed. With UVA, a higher degree of expression was observed at a time of 30 minutes of irradiation. With UVB the highest expression shifted to a time of 20 minutes. With UVC, overexpression was observed after 10 minutes. Conclusion: UV radiation generates cellular stress on HaCaT cells, evaluated by the stress bioindicator Hsp70. According to the wavelength of UV radiation, those that have a shorter wavelength have a greater potential for cellular damage, such as UVC.