The interfacial heat transfer coefficient(IHTC)is one of the main input parameters required by casting simulation software.It plays an important role in the accurate modeling of the solidification process.However,its ...The interfacial heat transfer coefficient(IHTC)is one of the main input parameters required by casting simulation software.It plays an important role in the accurate modeling of the solidification process.However,its value is not easily identifiable by means of experimental methods requiring temperature measurements during the solidification process itself.For these reasons,an optimal experiment design was performed in this study to determine the optimal position for the temperature measurement and the optimal thickness of the rectangular cast iron part.This parameter was identified using an inverse technique.In particular,two different algorithms were used:Levenberg Marquard(LM)and Monte Carlo(MC).A numerical model of the solidification process was associated with the optimization algorithm.The temperature was measured at different positions from the mould/metal interface at d=0 mm(mould/metal interface),30 mm,60 mm and 90 mm.the thicknesses of the cast part were:L1=40 mm,60 mm and 80 mm.A comparative study on the IHTC identification was then carried out by varying the initial value of the IHTC between 500 Wm^(-2)K^(-1) and 1050 Wm^(-2)K^(-1).Results showed that the MC algorithm used for estimating the IHTC gives the best results,and the optimal position was at d=30 mm,the position closest to the mould/metal interface,for the lowest thickness L1=40 mm.展开更多
As an experimental technique, it’s desired that the temperature in specimen is uniform in high temperature split Hopkinson pressure bar (SHPB) experiments. However, the temperature in specimen decreases and the tempe...As an experimental technique, it’s desired that the temperature in specimen is uniform in high temperature split Hopkinson pressure bar (SHPB) experiments. However, the temperature in specimen decreases and the temperature of bars increases when specimen starts to contact with bars, which induces the nonuniform temperature distribution in specimen, and may result in inac-curacy of experimental results. In this paper, the temperature distributions of specimen and bars in high temperature SHPB experiments were investigated while the specimen was heated alone. Firstly, the temperature history of specimen was measured at different initial temperatures by ex-periments, then simulation was carried out. Simulation results were consistent with experimental results by adjusting the thermal contact coefficient between specimen and bars. By this way, the thermal contact coefficient and simulation results were validated, and the proper cold contact times of specimen and bars in high temperature SHPB experiments were discussed. Finally, the results were compared with those in references.展开更多
The scientific article examines the physical and mechanical properties of raw cotton stored in buntings in cotton palaces. Because during the storage of raw cotton in bunts, some of its properties deteriorate, some im...The scientific article examines the physical and mechanical properties of raw cotton stored in buntings in cotton palaces. Because during the storage of raw cotton in bunts, some of its properties deteriorate, some improvements. Therefore, the mathematical modeling of storage conditions of raw cotton in bunts and the physical and mechanical conditions that occur in it is of great importance. In the developed mathematical model, the main factor influencing the physical and mechanical properties of raw cotton is the change in temperature. Due to the temperature, kinetic and biological processes accumulated in the raw cotton in Bunt, it can spread over a large surface, first in a small-local state, over time with a nonlinear law. As a result, small changes in temperature lead to a qualitative change in physical properties. In determining the law of temperature distribution in the raw cotton in Bunt, Laplace’s differential equation of heat transfer was used. The differential equation of heat transfer in Laplace’s law was replaced by a system of ordinary differential equations by approximation. Conditions are solved in MAPLE-17 program by numerical method. As a result, graphs of temperature changes over time in raw cotton were obtained. In addition, the table shows the changes in density, pressure and mass of cotton, the height of the bun. As the density of the cotton raw material increases from the top layer of the bunt to the bottom layer, an increase in the temperature in it has been observed. This leads to overheating of the bottom layer of cotton and is the main reason for the deterioration of the quality of raw materials.展开更多
在内径为2 mm的水平不锈钢微通道内对R410A的沸腾换热特性进行了实验研究。质量流率为200~600 kg/(m^2·s),热流密度的范围为5~15 k W/m^2,干度的范围为0.1~0.8,饱和温度为0℃和5℃。结果显示,当干度大于0.5时,随着热流密度的上升...在内径为2 mm的水平不锈钢微通道内对R410A的沸腾换热特性进行了实验研究。质量流率为200~600 kg/(m^2·s),热流密度的范围为5~15 k W/m^2,干度的范围为0.1~0.8,饱和温度为0℃和5℃。结果显示,当干度大于0.5时,随着热流密度的上升,沸腾换热系数显著上升,其平均增幅分别达到了4.6%和7.7%。当干度小于0.5时,热流密度对换热系数的影响十分微弱。随着质量流率的上升,换热系数均出现了小幅上升,其平均增幅也分别达到了1.1%和2%。而饱和温度对换热系数则几乎没有影响。随后,对可能的机理进行了讨论。实验结果又与Choi K I等以及Ebisu T等在内径分别为1.5 mm,3 mm和6.4mm管道内的研究结果进行了比较。结果显示,在相似工况下,随着管径的下降,当干度小于0.5时,换热系数呈现出上升的趋势,其平均增幅分别达到了18.4%,23.6%和19.5%。展开更多
文摘The interfacial heat transfer coefficient(IHTC)is one of the main input parameters required by casting simulation software.It plays an important role in the accurate modeling of the solidification process.However,its value is not easily identifiable by means of experimental methods requiring temperature measurements during the solidification process itself.For these reasons,an optimal experiment design was performed in this study to determine the optimal position for the temperature measurement and the optimal thickness of the rectangular cast iron part.This parameter was identified using an inverse technique.In particular,two different algorithms were used:Levenberg Marquard(LM)and Monte Carlo(MC).A numerical model of the solidification process was associated with the optimization algorithm.The temperature was measured at different positions from the mould/metal interface at d=0 mm(mould/metal interface),30 mm,60 mm and 90 mm.the thicknesses of the cast part were:L1=40 mm,60 mm and 80 mm.A comparative study on the IHTC identification was then carried out by varying the initial value of the IHTC between 500 Wm^(-2)K^(-1) and 1050 Wm^(-2)K^(-1).Results showed that the MC algorithm used for estimating the IHTC gives the best results,and the optimal position was at d=30 mm,the position closest to the mould/metal interface,for the lowest thickness L1=40 mm.
文摘As an experimental technique, it’s desired that the temperature in specimen is uniform in high temperature split Hopkinson pressure bar (SHPB) experiments. However, the temperature in specimen decreases and the temperature of bars increases when specimen starts to contact with bars, which induces the nonuniform temperature distribution in specimen, and may result in inac-curacy of experimental results. In this paper, the temperature distributions of specimen and bars in high temperature SHPB experiments were investigated while the specimen was heated alone. Firstly, the temperature history of specimen was measured at different initial temperatures by ex-periments, then simulation was carried out. Simulation results were consistent with experimental results by adjusting the thermal contact coefficient between specimen and bars. By this way, the thermal contact coefficient and simulation results were validated, and the proper cold contact times of specimen and bars in high temperature SHPB experiments were discussed. Finally, the results were compared with those in references.
文摘The scientific article examines the physical and mechanical properties of raw cotton stored in buntings in cotton palaces. Because during the storage of raw cotton in bunts, some of its properties deteriorate, some improvements. Therefore, the mathematical modeling of storage conditions of raw cotton in bunts and the physical and mechanical conditions that occur in it is of great importance. In the developed mathematical model, the main factor influencing the physical and mechanical properties of raw cotton is the change in temperature. Due to the temperature, kinetic and biological processes accumulated in the raw cotton in Bunt, it can spread over a large surface, first in a small-local state, over time with a nonlinear law. As a result, small changes in temperature lead to a qualitative change in physical properties. In determining the law of temperature distribution in the raw cotton in Bunt, Laplace’s differential equation of heat transfer was used. The differential equation of heat transfer in Laplace’s law was replaced by a system of ordinary differential equations by approximation. Conditions are solved in MAPLE-17 program by numerical method. As a result, graphs of temperature changes over time in raw cotton were obtained. In addition, the table shows the changes in density, pressure and mass of cotton, the height of the bun. As the density of the cotton raw material increases from the top layer of the bunt to the bottom layer, an increase in the temperature in it has been observed. This leads to overheating of the bottom layer of cotton and is the main reason for the deterioration of the quality of raw materials.
文摘在内径为2 mm的水平不锈钢微通道内对R410A的沸腾换热特性进行了实验研究。质量流率为200~600 kg/(m^2·s),热流密度的范围为5~15 k W/m^2,干度的范围为0.1~0.8,饱和温度为0℃和5℃。结果显示,当干度大于0.5时,随着热流密度的上升,沸腾换热系数显著上升,其平均增幅分别达到了4.6%和7.7%。当干度小于0.5时,热流密度对换热系数的影响十分微弱。随着质量流率的上升,换热系数均出现了小幅上升,其平均增幅也分别达到了1.1%和2%。而饱和温度对换热系数则几乎没有影响。随后,对可能的机理进行了讨论。实验结果又与Choi K I等以及Ebisu T等在内径分别为1.5 mm,3 mm和6.4mm管道内的研究结果进行了比较。结果显示,在相似工况下,随着管径的下降,当干度小于0.5时,换热系数呈现出上升的趋势,其平均增幅分别达到了18.4%,23.6%和19.5%。