期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
NUMERICAL ANALYSIS OF THREE-DIMENSIONAL FLUID FLOW AND HEAT TRANSFER IN TIG WELD POOL WITH FULL PENETRATION WU Chuansong,CAO Zhenning,WU Lin Harbin Institute of Technology,Harbin,China 被引量:4
1
作者 WU Chuansong,CAO Zhenning,WU Lin Harbin Institute of Technology,Harbin,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1993年第8期130-136,共7页
A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpi... A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpieees,takes the are pressure as the drivingforce of the pool surface deformation,and determines the surface configuration of weldpool based on the dynamic balance of arc pressure,pool gravity and surface tension atdeformed weld pool surface. The SIMPLER algorithm is used to calculate the fluid flowfield and temperature distribution in TIG weld pools of stainless steel workpieces.TIGwelding experiments are made to verify the validity of the model.It shows the calculatedresults by the model are in good agreement with experimental measurements. professor,Dept of Welding Engineering,Harbin Institute of Technology,Harbin 150006,China 展开更多
关键词 TIG weld pool full penetration fluid flow heat transfer numerical analysis
下载PDF
Numerical Study of Fluid Dynamics and Heat Transfer Induced by Plasma Discharges 被引量:1
2
作者 俞建阳 陈浮 +1 位作者 刘华坪 宋彦萍 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第1期41-49,共9页
A numerical investigation is conducted to explore the evolution of a plasma discharge and its interaction with the fluid flow based on a self-consistent fluid model which couples the discharge dynamics with the fluid ... A numerical investigation is conducted to explore the evolution of a plasma discharge and its interaction with the fluid flow based on a self-consistent fluid model which couples the discharge dynamics with the fluid dynamics.The effects of the applied voltage on the distribution of velocity and temperature in initially static air are parainetrically studied.Furthermore,the spatial structure of plasma discharge and the resulting force contours in streamwise and normal directions are discussed in detail.The result shows that the plasma actuator produces a net force that should always be directed away from the exposed electrode,which results in an ionic wind pushing particles into a jet downstream of the actuator.When the energy added by the plasma is taken into account,the ambient air temperature is increased slightly around the electrode,but the velocity is almost not affected.Therefore it is unlikely that the induced flow is buoyancy driven.For the operating voltages considered in this paper,the maximum induced velocity is found to follow a power law,i.e.,it is proportional to the applied voltage to the 3.5 power.This promises an efficient application in the flow control with plasma actuators. 展开更多
关键词 fluid dynamics heat transfer numerical study dielectric barrier discharge(DBD)
下载PDF
Modeling transient fluid flow and heat transfer phenothena in stationary pulsed current TIG weld pool 被引量:1
3
作者 Zheng Wei Wu Chuansong and Wu Lin(Harbin Institute of Technology, Harbin) 《China Welding》 EI CAS 1995年第2期139-149,共11页
A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for w... A mathematical model is presented to describe transient behavior of heat transfer and fluid flow in stationary pulsed current tungsten inert gas (PC-TIG) weld pool, which considers three kinds of driving, forces for weld pool convection, i,e. buoyancyforce, electromagnetic force and surface tension force. furthermore. the effect of vaporization heat flux at the free surface of weld pool and the temperature coefficient of surface tenston which is a function of temperatuer and composition are considered in the model In order to accelerate the convergence of iteration the AST(additive source term)method which concerns with the thermal energv boundary conditions is extended successfully to deal with the momentum boundary conditions by which the transient momentum equation and energy equation are mutually coupled. At the same time. ADI (Alternating direction implicit) method and DBC (double blocks correction) technque are employed to solve the finite difference equations. The results of numerical simulation demonstrate the transient behavior of PC-TIG weld pool, as well as the periodic variation of fluid flow and heat transfer with the periodic variation of welding current in stationary PC-TIG weld pool. The theoretical predictions based on this model are, shown to be in good accordance with the experimental measurements. 展开更多
关键词 numerical simulation pulsed current TIG. weld pool. fluid flow. heat transfer
下载PDF
A new algorithm of global tightly-coupled transient heat transfer based on quasi-steady flow to the conjugate heat transfer problem
4
作者 Fanchao Meng Sujun Dong +1 位作者 Jun Wang Dechun Guo 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第5期233-235,共3页
Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further pu... Concerning the specific demand on solving the long-term conjugate heat transfer (CHT) problem, a new algorithm of the global tightly-coupled transient heat transfer based on the quasi-steady flow field is further put forward. Compared to the traditional loosely-coupled algorithm, the computational efficiency is further improved with the greatly reduced update frequency of the flow field, and moreover the update step of the flow field can be reasonably determined by using the engineering empirical formula of the Nusselt number based on the changes of the inlet and outlet boundary conditions. Taking a duct heated by inner forced air flow heating process as an example, the comparing results to the tightly-coupled transient calculation by Fluent software shows that the new algorithm can significantly improve the computational efficiency with a reasonable accuracy on the transient temperature distribution, such as the computing time is reduced to 22,8% and 40% while the duct wall temperature deviation are 7% and 5% respectively using two flow update time step of 100 s and 50 s on the variable inlet-flow rate conditions. 展开更多
关键词 Conjugate heat transfer Loosely-coupledQuasi-steady Computational fluid dynamics
下载PDF
Investigation on Temperature Field Calibration and Analysis of Wind Tunnel
5
作者 Zhaokun Ren Zhanyuan Ma +3 位作者 Yue Zhang Hongda Xu Yunxiang Wang Hui Xu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第3期63-79,共17页
For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss compo... For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss composed of temperature sensors was used to calibrate the temperature field of a completed wind tunnel section.By adjusting the distance between the temperature measurement truss and the nozzle,as well as the wind speed,the temperature field distribution data at different positions could be obtained.Analyze these data to identify important factors that affect the distribution of temperature field.Simultaneously,the temperature field of the wind tunnel was simulated accordingly.The purpose is to further analyze the fluid heat transfer between air and wind tunnel walls through numerical simulation.Through the above analysis methods,the quality of the temperature field in the wind tunnel has been further verified,providing reference for future wind tunnel tests of relevant models. 展开更多
关键词 wind tunnel temperature field numerical simulation fluid heat transfer
下载PDF
Thermal instability and heat transfer of viscoelastic fluids in bounded porous media with constant heat flux boundary
6
作者 牛骏 石在虹 谭文长 《Journal of Hydrodynamics》 SCIE EI CSCD 2015年第5期809-812,共4页
A numerical simulation is performed for thermal instability and heat transfer of viscoelastic fluids in bounded porous media under the bottom constant heat flux boundary condition. The results for six different combin... A numerical simulation is performed for thermal instability and heat transfer of viscoelastic fluids in bounded porous media under the bottom constant heat flux boundary condition. The results for six different combinations of relaxation and retardation times demonstrate the existence of the thermal instability induced flow bifurcation. It is found that the increase of the relaxation time can enhance the heat transfer efficiency by disturbing the fluid flow and facilitating the bifurcation. The increase of the retardation time can stabilize the flow and postpone the bifurcation, leading to simpler flow pattern and lower heat transfer rate. 展开更多
关键词 thermal instability heat transfer viscoelastic fluid porous media bifurcation
原文传递
High-temperature corrosion of Sn-Bi-Zn-Ga alloys as heat transfer fluid 被引量:1
7
作者 Qing-Meng Wang Xiao-Min Cheng +2 位作者 Yuan-Yuan Li Guo-Ming Yu Zhi Liu 《Rare Metals》 SCIE EI CAS CSCD 2021年第8期2221-2229,共9页
The new heat transfer alloy is highly reactive at high temperatures,and the corrosion of the container material determines the service life of the heat transfer system.The high-temperature corrosion of Sn-Bi-Zn-Ga all... The new heat transfer alloy is highly reactive at high temperatures,and the corrosion of the container material determines the service life of the heat transfer system.The high-temperature corrosion of Sn-Bi-Zn-Ga alloys as heat transfer fluid was investigated.The microstructure and elemental distribution were studied by field emission scanning electron microscopy(FESEM)and energy dispersive spectroscopy(EDS).The thermal properties before and after corrosion were studied by differential scanning calorimetry(DSC).The results show that the corrosion kinetics of the studied materials follows the parabolic law and the thermal properties after corrosion are improved.Ga significantly improves the thermal conductivity.316 stainless steel exhibits excellent corrosion resistance due to its high Cr and Ni contents.Corrosion mechanism analysis shows that the oxidation of Ga has a smaller Gibbs free energy,and an oxide forms at the corrosion interface to prevent dissolution corrosion and oxidative corrosion of the container material. 展开更多
关键词 Sn-Bi-Zn-Ga heat transfer fluids Thermophysical properties High-temperature corrosion
原文传递
Thermal energy storage inside the chamber with a brick wall using the phase change process of paraffinic materials:A numerical simulation 被引量:1
8
作者 M.Javidan M.Asgari +3 位作者 M.Gholinia M.Nozari A.Asgari D.D.Ganji 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第3期197-206,共10页
Phase change materials are one of the potential resources to replace fossil fuels in regards of supplying the energy of buildings.Basically,these materials absorb or release heat energy with the help of their latent h... Phase change materials are one of the potential resources to replace fossil fuels in regards of supplying the energy of buildings.Basically,these materials absorb or release heat energy with the help of their latent heat.Phase change materials have low thermal conductivity and this makes it possible to use the physical properties of these materials in the tropical regions where the solar radiation is more direct and concentrated over a smaller area.In this theoretical work,an attempt has been made to study the melting process of these materials by applying constant heat flux and temperature.It was found that by increasing the thickness of phase change materials’layers,due to the melting,more thermal energy is stored.Simultaneously it reduces the penetration of excessive heat into the chamber,so that by increasing the thickness of paraffin materials up to 20 mm,the rate of temperature reduction reaches more than 18%.It was also recognized that increasing the values of constant input heat flux increases buoyancy effects.Increasing the Stefan number from 0.1 to 0.3,increases the temperature by 6%. 展开更多
关键词 Thermal energy storage heat transfer fluid Radiation heat transfer Phase change material
下载PDF
NUMERICAL SIMULATION OF CASTING PROCESS 被引量:2
9
作者 L.L. Chen, R.X. Liu and H.T. Lin College of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期764-769,共6页
In this paper, the development status of casting numerical simulation technology is introduced. In additional, mathematical model, solution method, initial condition, boundary condition and defect predicting scheme of... In this paper, the development status of casting numerical simulation technology is introduced. In additional, mathematical model, solution method, initial condition, boundary condition and defect predicting scheme of foundry process are also analyzed, which include the mold filling process, solidification process and the process coupling fluid flow with heat transfer. Finally, a practical casting is taken out to show how to predict defects and optimize foundry process with numerical simulation technology. 展开更多
关键词 FOUNDRY numerical simulation temperature field fluid field coupling fluid flow with heat transfer
下载PDF
Comparisons between different models for thermal simulation of GTAW process 被引量:1
10
作者 徐艳利 魏艳红 《China Welding》 EI CAS 2005年第2期125-129,共5页
Two mathematical models are built to study the effects of the fluid flow on thermal distributions of the gas tungsten arc welding(GTAW) process. One model is based on the heat conductivity equation, which doesn't t... Two mathematical models are built to study the effects of the fluid flow on thermal distributions of the gas tungsten arc welding(GTAW) process. One model is based on the heat conductivity equation, which doesn't take the effects of the fluid flow into account, and the other couples the laminar heat transfer and fluid flow in the weld pool, which is called laminar fluid flow model in short. The simulated results of the two models show that the pattern and velocity of the fluid flow play a critical role in determining the thermal distribution and the weld pool shape. For the laminar fluid flow model, its highest temperature is 400 K lower than that calculated with the other model and the depth of its weld pool is shallower too, which is mainly caused by the main vortex of the flow in the weld pool. 展开更多
关键词 thermal distribution gas tungsten are welding heat transfer and fluid flow
下载PDF
Numerical Study of a Cylindro-Parabolic Cooker “Blazing Tube”
11
作者 Boureima Dianda Mibienpan Ki +5 位作者 Wende Pouiré Germain Ouédraogo Nébon Bado Sikoudouin Maurice Thierry Ky Bruno Korgo Sié Kam Dieudonné Joseph Bathiebo 《Open Journal of Applied Sciences》 CAS 2022年第11期1783-1795,共13页
The objective of this work is to numerically determine the thermal performance of the parabolic cylinder cooker commonly “blazing tube”. These performances were determined by establishing heat balances at the differ... The objective of this work is to numerically determine the thermal performance of the parabolic cylinder cooker commonly “blazing tube”. These performances were determined by establishing heat balances at the different levels of the system. The equations obtained have been discretized;simplifying assumptions have been made to facilitate their resolution. We adopted Gauss Seidel’s method using MATLAB software to solve these equations. The temperatures of the coolant, the glass and the absorber were determined as a function of time and along the tube. The thermal efficiency was also determined. It emerged that the different temperatures evolve linearly as a function of the length of the tube. Yield and temperatures depend on the amount of sunshine. 展开更多
关键词 Solar Cooker heat transfer Fluid Temperature YIELD SUNSHINE
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部