期刊文献+
共找到4,752篇文章
< 1 2 238 >
每页显示 20 50 100
Implementation of heat exchanger performance testing system of heat transfer and flow resistance 被引量:3
1
作者 操瑞兵 陈亚平 +2 位作者 吴嘉峰 董聪 盛艳军 《Journal of Southeast University(English Edition)》 EI CAS 2012年第1期46-51,共6页
A heat transfer performance testing system is presented with its hardware structure, operation principle, and software control and measurement system. Working fluids of the subsystem include thermal conducting oil, co... A heat transfer performance testing system is presented with its hardware structure, operation principle, and software control and measurement system. Working fluids of the subsystem include thermal conducting oil, compressed air, glycol water solution and water as the heating fluids, and air and water as the cooling fluids. The heat transfer performance testing of heat exchangers can be conducted not only for a conventional one heating fluid to one cooling fluid, but also for a compound air cooling heat exchanger with two or three heating fluids in parallel or in series. The control and measurement system is implemented based on a LabVIEW software platform, consisting of the data acquisition and process system, and the automotive operation and control system. By using advanced measuring instruments combined with sound computer software control, the testing system has characteristics of a compact structure, high accuracy, a wide range of testing scope and a friendly operation interface. The uncertainty of the total heat transfer coefficient K is less than 5%. The testing system provides a reliable performance testing platform for designing and developing new heat exchangers. 展开更多
关键词 heat exchanger heat transfer performance testing system LABVIEW
下载PDF
Air-Side Heat Transfer Performance Prediction for Microchannel Heat Exchangers Using Data-Driven Models with Dimensionless Numbers
2
作者 Long Huang Junjia Zou +2 位作者 Baoqing Liu Zhijiang Jin Jinyuan Qian 《Frontiers in Heat and Mass Transfer》 EI 2024年第6期1613-1643,共31页
This study explores the effectiveness of machine learning models in predicting the air-side performance of microchannel heat exchangers.The data were generated by experimentally validated Computational Fluid Dynam-ics... This study explores the effectiveness of machine learning models in predicting the air-side performance of microchannel heat exchangers.The data were generated by experimentally validated Computational Fluid Dynam-ics(CFD)simulations of air-to-water microchannel heat exchangers.A distinctive aspect of this research is the comparative analysis of four diverse machine learning algorithms:Artificial Neural Networks(ANN),Support Vector Machines(SVM),Random Forest(RF),and Gaussian Process Regression(GPR).These models are adeptly applied to predict air-side heat transfer performance with high precision,with ANN and GPR exhibiting notably superior accuracy.Additionally,this research further delves into the influence of both geometric and operational parameters—including louvered angle,fin height,fin spacing,air inlet temperature,velocity,and tube temperature—on model performance.Moreover,it innovatively incorporates dimensionless numbers such as aspect ratio,fin height-to-spacing ratio,Reynolds number,Nusselt number,normalized air inlet temperature,temperature difference,and louvered angle into the input variables.This strategic inclusion significantly refines the predictive capabilities of the models by establishing a robust analytical framework supported by the CFD-generated database.The results show the enhanced prediction accuracy achieved by integrating dimensionless numbers,highlighting the effectiveness of data-driven approaches in precisely forecasting heat exchanger performance.This advancement is pivotal for the geometric optimization of heat exchangers,illustrating the considerable potential of integrating sophisticated modeling techniques with traditional engineering metrics. 展开更多
关键词 Machine learning microchannel heat exchangers heat transfer data-driven modeling computational fluid dynamics
下载PDF
Numerical Simulation of Liquified Natural Gas Boiling Heat Transfer Characteristics in Helically Coiled Tube-in-Tube Heat Exchangers
3
作者 Fayi Yan He Lu Shijie Feng 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1493-1514,共22页
Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified... Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter. 展开更多
关键词 Liquefied natural gas numerical simulation vapor-liquid two-phase flow heat transfer helically coiled tube-intube heat exchanger
下载PDF
Performance Simulation of a Double Tube Heat Exchanger Based on Different Nanofluids by Aspen Plus
4
作者 Fawziea M.Hussien Atheer S.Hassoon Ghaidaa M.Ahmed 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期175-191,共17页
A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity.Adding nanoparticles of high thermal conductivity materials is a significant way to enhance ... A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity.Adding nanoparticles of high thermal conductivity materials is a significant way to enhance the heat transfer fluid’s thermal conductivity.This research used engine oil containing alumina(Al_(2)O_(3))nanoparticles and copper oxide(CuO)to test whether or not the heat exchanger’s efficiency could be improved.To establish the most effective elements for heat transfer enhancement,the heat exchangers thermal performance was tested at 0.05%and 0.1%concentrations for Al_(2)O_(3)and CuO nanoparticles.The simulation results showed that the percentage increase in Nusselt number(Nu)for nanofluid at 0.05%particle concentration compared to pure oil was 9.71%for CuO nanofluids and 6.7%for Al_(2)O_(3)nanofluids.At 0.1%concentration,the enhancement percentage in Nu was approximately 23%for CuO and 18.67%for Al_(2)O_(3)nanofluids,respectively.At a concentration of 0.1%,CuO nanofluid increased the LMTD and overall heat transfer coefficient(U)by 7.24 and 5.91%respectively.Both the overall heat transfer coefficient(U)and the heat transfer coefficient(hn)for CuO nanofluid at a concentration of 0.1%increased by 5.91%and 10.68%,respectively.The effectiveness(εn)of a heat exchanger was increased by roughly 4.09%with the use of CuO nanofluid in comparison to Al_(2)O_(3)at a concentration of 0.1%.The amount of exergy destruction in DTHX goes down as Re and volume fractions go up.Moreover,at 0.05%and 0.1%nanoparticle concentrations,the percentage increase in dimensionless exergy is 10.55%and 13.08%,respectively.Finally,adding the CuO and Al_(2)O_(3)nanoparticles improved the thermal conductivity of the main fluid(oil),resulting in a considerable increase in the thermal performance and rate of heat transfer of a heat exchanger. 展开更多
关键词 NANofLUID nusselt number exergy dimensionless exergy destruction double tube heat exchanger performance simulation aspen plus
下载PDF
Performance comparison for oil-water heat transfer of circumferential overlap trisection helical baffle heat exchanger 被引量:2
5
作者 王伟晗 程道来 +1 位作者 刘涛 刘颖昊 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2720-2727,共8页
The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and com... The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and compared with a segmental baffle heat exchanger. The results show that the shell side heat transfer coefficient h_o and pressure drop Δp_o both increase while the comprehensive index h_o/Δp_o decreases with the increase of the mass flow rate of all schemes. And the shell side heat transfer coefficient, pressure drop and the comprehensive index ho/Δpo decrease with the increase of the baffle incline angle at a certain mass flow rate. The average values of shell side heat transfer coefficient and the comprehensive index h_o/Δp_o of the 12° helical baffled scheme are above 50% higher than those of the segmental one correspondingly, while the pressure drop value is very close and the ratios of the average values are about 1.664 and 1.596, respectively. The shell-side Nusselt number Nu_o and the comprehensive index Nu_o·Eu_(zo)^(-1) increase with the increase of Reynolds number of the shell side axial in all schemes, and the results also demonstrate that the small incline angled helical scheme has better comprehensive performance. 展开更多
关键词 performance experiments helical baffled heat exchangers circumferential overlap of baffles incline angle of baffle heat transfer enhancement
下载PDF
Comparison of heat transfer performances of helix baffled heat exchangers with different baffle configurations 被引量:3
6
作者 董聪 陈亚平 吴嘉峰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第1期255-261,共7页
Numerical simulations were performed on flow and heat transfer performances of heat exchangers having six helical baffles of different baffle shapes and assembly configurations, i.e., two trisection baffle schemes, tw... Numerical simulations were performed on flow and heat transfer performances of heat exchangers having six helical baffles of different baffle shapes and assembly configurations, i.e., two trisection baffle schemes, two quadrant baffle schemes, and two continuous helical baffle schemes. The temperature contour or the pressure contour and velocity contour plots with superimposed velocity vectors on meridian, transverse and unfolded concentric hexagonal slices are presented to obtain a full angular view. For the six helix baffled heat exchangers,the different patterns of the single vortex secondary flow and the shortcut leakage flow were depicted as well as the heat transfer properties were compared. The results show that the optimum scheme among the six configurations is a circumferential overlap trisection helix baffled heat exchanger with a baffle incline angle of 20°(20°TCO) scheme with an anti-shortcut baffle structure, which exhibits the second highest pressure dropΔpo, the highest overall heat transfer coefficient K, shell-side heat transfer coefficient hoand shell-side average comprehensive index ho/Δpo. 展开更多
关键词 Helix baffled heat exchanger Trisection baffle Quadrant baffle Continuous baffle Circumferential overlap baffle Secondary flow heat transfer Numerical simulation
下载PDF
Analysis of influence of heat exchangerfouling on heat transfer performancebased on thermal fluid coupling 被引量:1
7
作者 HUANG Si MURAD Tariq +2 位作者 NIU Qifeng LIN Guangtang CHEN Jianxun 《排灌机械工程学报》 CSCD 北大核心 2023年第7期695-700,共6页
A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid do... A study on heat transfer performance by thermal fluid coupling simulation for the fouling in a shell-tube heat exchanger used in engineering was presented. The coupling simulation was performed in a fluid and solid domains under three different fouling conditions: fouling inside the tube, fouling outside the tube, and fouling inside the shell. The flow field, temperature, and pressure distributions in the heat exchanger were solved numerically to analyze the heat transfer performance parameters, such as thermal resistance. It is found that the pressure drop of the heat exchanger and the thermal resistance of the tube wall increase by nearly 30% and 20%, respectively, when the relative fouling thickness reaches 10%. The fouling inside the tube has more impact on the heat transfer performance of the heat exchanger, and the fouling inside the shell has less impact. 展开更多
关键词 shell-tube heat exchanger thermal fluid coupling fouling thermal resistance heat transfer analysis
下载PDF
Optimum Profiles of Endwall Contouring for Enhanced Net Heat Flux Reduction and Aerodynamic Performance 被引量:1
8
作者 Arjun K S Tide P S Biju N 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期80-92,共13页
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish... Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization. 展开更多
关键词 endwall contouring turbine VANE heat transfer phantom cooling coolant injection net heat flux reduction aerodynamic performance
下载PDF
Numerical simulation of heat transfer enhancement by strip-coil-baffles in tube-bundle for a tube-shell heat exchanger
9
作者 陈亚平 梅娜 施明恒 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期81-85,共5页
A novel strip-coil-baffle structure used to enhance heat transfer and support the tube bundle for a tube-shell heat exchanger is proposed. The new structure can sleeve the tubes in bundle alternatively to create a vor... A novel strip-coil-baffle structure used to enhance heat transfer and support the tube bundle for a tube-shell heat exchanger is proposed. The new structure can sleeve the tubes in bundle alternatively to create a vortex flow in a heat exchanger. The numerical simulation on the flow and heat transfer characteristics for this new structure heat exchanger is conducted. The computational domain consists of two strip-coil sleeved tubes and two bare tubes oppositely placed at each comer of a square. The velocity and temperature fields in such strip-coil-baffled channel are simulated using FLUENT software. The effects of the strip-coil-baffles on heat transfer enhancement and flow resistance in relation to the Reynolds number are analyzed. The results show that this new structure bundle can enhance the heat transfer coefficient up to a range of 40% to 55% in comparison with a bare tube bundle; meanwhile, higher flow resistance is also accompanied. It is believe that the strip-coil- baffled heat exchanger should have promising applications in many industry fields. 展开更多
关键词 heat transfer enhancement strip-coil-baffle tube-shell heat exchanger vortex flow numerical simulation
下载PDF
Research on shell-side heat and mass transfer with multi-component in LNG spiral-wound heat exchanger under sloshing conditions
10
作者 Xue-Ping Du Guang-Lei Yu +3 位作者 Ya-Cheng Xu Zhi-Jie Chen Nai-Liang Li Huan-Guang Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1333-1345,共13页
The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper stud... The spiral-wound heat exchanger(SWHE) is the primary low-temperature heat exchanger for large-scale LNG plants due to its high-pressure resistance, compact structure, and high heat exchange efficiency. This paper studied the shell-side heat and mass transfer characteristics of vapor-liquid two-phase mixed refrigerants in an SWHE by combining a multi-component model in FLUENT software with a customized multicomponent mass transfer model. Besides, the mathematical model under the sloshing condition was obtained through mathematical derivation, and the corresponding UDF code was loaded into FLUENT as the momentum source term. The results under the sloshing conditions were compared with the relevant parameters under the steady-state condition. The shell-side heat and mass transfer characteristics of the SWHE were investigated by adjusting the component ratio and other working conditions. It was found that the sloshing conditions enhance the heat transfer performance and sometimes have insignificant effects. The sloshing condition is beneficial to reduce the flow resistance. The comprehensive performance of multi-component refrigerants has been improved and the improvement is more significant under sloshing conditions, considering both the heat transfer and pressure drop.These results will provide theoretical support for the research and design of multi-component heat and mass transfer enhancement of LNG SWHE under ocean sloshing conditions. 展开更多
关键词 Spiral-wound heat exchanger Sloshing conditions Two-phase flow MULTI-COMPONENT heat and mass transfer
下载PDF
Numerical Studies on Thermal and Hydrodynamic Characteristics of LNG in Helically Coiled Tube-in-Tube Heat Exchangers
11
作者 Fayi Yan Xuejian Pei +1 位作者 He Lu Shuzhen Zong 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期287-304,共18页
As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natu... As compact and efficient heat exchange equipment,helically coiled tube-in-tube heat exchangers(HCTT heat exchangers)are widely used in many industrial processes.However,the thermal-hydraulic research of liquefied natural gas(LNG)as the working fluid inHCTT heat exchangers is rarely reported.In this paper,the characteristics of HCTT heat exchangers,in which LNG flows in the inner tube and ethylene glycol-water solution flows in the outer tube,are studied by numerical simulations.The influences of heat transfer characteristics and pressure drops of the HCTT heat transfers are studied by changing the initial flow velocity,the helical middle diameter,and the helical pitch.The results indicate that different initial flow velocities in the inner tube and the outer tube of the HCTT heat exchanger have little influence on the secondary flow of the fluid in the helical tubes,and the overall flow characteristics tend to be stable.The smaller helical middle diameter of the HCTT heat exchanger leads to the shorter fluid flow length,the smaller resistance along the tubes and the increase of initial pressure under the condition of constant inlet velocity,which promotes the occurrence of secondary flow.The axial flow of fluid promotes the destruction of heat transfer boundary layer and gains strength of the turbulence and heat transfer efficiency.With the increase of the helical pitch of the HCTT heat exchanger,the turbulent intensity and the heat transfer efficiency are also increased.Moreover,the improvement of the flow state of the HCTT exchanger in a longer helical pitch also enhances the heat exchange efficiency. 展开更多
关键词 HCTT heat exchanger LNG helically coil heat transfer coefficient pressure drop
下载PDF
Mathematical Modelling and Design of Helical Coil Heat Exchanger for Production of Hot Air for Fluidized Bed Dryer
12
作者 Iniubong James Uwa Uwem Ekwere Inyang Innocent Oseribho Oboh 《Advances in Chemical Engineering and Science》 CAS 2024年第3期125-136,共12页
In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil h... In global industrialization, efforts have been made to increase the rate of heat transfer in heat exchanger, minimizing the size of heat exchanger to reduce cost as well as increasing the effectiveness. Helical coil heat exchanger (HCHE) has been proven to be effective in improving heat transfer due to its large surface area. In this study, HCHE was designed to provide hot air needed for fluidized bed drying processes. The HCHE design model was fabricated and evaluated to study the efficiency of the hot air output for a laboratory fluidized bed dryer. The mathematical model for estimation of the final (output) temperature of air, Taf, passing through the HCHE was developed and validated experimentally. The drying of bitter kola particulates was carried out with a drying temperature of 50C 3C and a bed height-to-bed diameter ratio (H/D) of 1.5. The time taken to dry bitter kola particulates to 0.4% moisture content was 1 hour 45 minutes. Hence, HCHE is recommended for use in the production of hot for laboratory-scale fluidized bed dryers. 展开更多
关键词 Helical Coil heat exchanger Fluidized Bed Dryer heat transfer Output Air Temperature
下载PDF
Performance comparison of heat exchangers using sextant/trisection helical baffles and segmental ones 被引量:5
13
作者 Yaping Chen Hongling Tang +2 位作者 JiafengWu Huaduo Gu Shifan Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第12期2892-2899,共8页
The shell side flow fields of both sextant and trisection helical baffle heat exchangers are presented on meridian and multilayer hexagon slices.It verifies that the performance of sextant schemes is better than those... The shell side flow fields of both sextant and trisection helical baffle heat exchangers are presented on meridian and multilayer hexagon slices.It verifies that the performance of sextant schemes is better than those of the other kinds of helical baffle heat exchangers.The main mechanisms are due to the restricted leakage flow in the minimized gaps with increased baffle number and by one row of tubes dampen the leakage flow in the circumferential overlapped area of the adjacent helical baffles.The performance features were simulated on two different angled sextant helical heat exchangers and each compared with two trisection ones of either identical helical pitch or identical incline angle.The results verified that the performances of helical heat exchangers are mainly determined by the helical pitch rather than the baffle incline angle.The average values of comprehensive index hoΔpo-1/3 of the trisection helical schemes T-24.1°and T-29.7°are correspondingly 3.47%and 3.34%lower than those of the sextant ones X-20°and X-25°with identical helical pitches.The comparison results show that the average values of shell side h.t.c.hoand comprehensive index hoΔpo-1/3 of the optimal dual helix sextant scheme DX30°are respectively 7.22%and 23.56%higher than those of the segment scheme S100. 展开更多
关键词 heat transfer Computational fluid dynamics Convection HELICAL BAFFLE heat exchangerS SEXTANT HELICAL baffles
下载PDF
Effects of bending on heat transfer performance of axial micro-grooved heat pipe 被引量:5
14
作者 蒋乐伦 汤勇 潘敏强 《Journal of Central South University》 SCIE EI CAS 2011年第2期580-586,共7页
Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved... Heat pipe is always bent in the typical application of electronic heat dissipation at high heat flux,which greatly affects its heat transfer performance. The capillary limit of heat transport in the bent micro-grooved heat pipes was analyzed in the vapor pressure drop,the liquid pressure drop and the interaction of the vapor with wick fluid. The bent heat pipes were fabricated and tested from the bending angle,the bending position and the bending radius. The results show that temperature difference and thermal resistance increase while the heat transfer capacity of the heat pipe decreases,with the increase of the bending angles and the bending position closer to the vapor section. However,the effects of bending radius can be ignored. The result agrees well with the predicted equations. 展开更多
关键词 electronics cooling system axial micro-grooved heat pipe BENDING heat transfer performance
下载PDF
Heat transfer enhancement of finned shell and tube heat exchanger using Fe_(2)O_(3)/water nanofluid 被引量:2
15
作者 AFSHARI Faraz SÖZEN Adnan +1 位作者 KHANLARI Ataollah TUNCER Azim Doğuş 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第11期3297-3309,共13页
Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgra... Heat transfer mechanisms and their thermal performances need to be comprehensively studied in order to optimize efficiency and minimize energy losses.Different nanoparticles in the base fluid are investigated to upgrade the thermal performance of heat exchangers.In this numerical study,a finned shell and tube heat exchanger has been designed and different volume concentrations of nanofluid were tested to determine the effect of utilizing nanofluid on heat transfer.Fe_(2)O_(3)/water nanofluids with volume concentration of 1%,1.5% and 2% were utilized as heat transfer fluid in the heat exchanger and the obtained results were compared with pure water.ANSYS Fluent software as a CFD method was employed in order to simulate the mentioned problem.Numerical simulation results indicated the successful utilization of nanofluid in the heat exchanger.Also,increasing the ratio of Fe_(2)O_(3) nanoparticles caused more increment in thermal energy without important pressure drop.Moreover,it was revealed that the highest heat transfer rate enhancement of 19.1% can be obtained by using nanofluid Fe_(2)O_(3)/water with volume fraction of 2%. 展开更多
关键词 heat transfer enhancement NANofLUID shell and tube heat exchanger Fe_(2)O_(3)
下载PDF
Experimental Study on Heat Transfer and Pressure Drop of Micro-Sized Tube Heat Exchanger 被引量:2
16
作者 王秋香 戴传山 《Transactions of Tianjin University》 EI CAS 2014年第1期21-26,共6页
A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of t... A micro-sized tube heat exchanger(MTHE) was fabricated, and its performance in heat transfer and pressure drop was experimentally studied. The single-phase forced convection heat transfer correlation on the sides of the MTHE tubes was proposed and compared with previous experimental data in the Reynolds number range of 500—1 800. The average deviation of the correlation in calculating the Nusselt number was about 6.59%. The entrance effect in the thermal entrance region was discussed. In the same range of Reynolds number, the pressure drop and friction coefficient were found to be considerably higher than those predicted by the conventional correlations. The product of friction factor and Reynolds number was also a constant, but much higher than the conventional. 展开更多
关键词 micro-sized tube heat exchanger heat transfer pressure drop entrance effect
下载PDF
Numerical Simulation of Heat Transfer Characteristics of Horizontal Ground Heat Exchanger in Frozen Soil Layer 被引量:2
17
作者 王华军 赵军 《Transactions of Tianjin University》 EI CAS 2007年第3期200-204,共5页
A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numeri... A simplified numerical model of heat transfer characteristics of horizontal ground heat exchanger (GHE) in the frozen soil layer is presented and the steady-state distribution of temperature field is simulated. Numerical results show that the frozen depth mainly depends on the soil′s moisture content and ambient temperature. The heat transfer loss of horizontal GHE tends to grow with the increase of the soil′s moisture content and the decrease of ambient temperature. Backfilled materials with optimal thermal conductivity can reduce the thermal loss effectively in the frozen soil. The applicability of the Chinese national standard “Technical Code for Ground Source Heat Pump (GB 50366-2005)” is verified. For a ground source heat pump project, the feasible layout of horizontal GHE should be determined based on the integration of the soil′s structure, backfilled materials, weather data, and economic analysis. 展开更多
关键词 ground source heat pump horizontal ground heat exchanger frozen soil layer heat transfer
下载PDF
Heat transfer performance testing of a new type of phase change heat sink for high power light emitting diode 被引量:2
18
作者 XIANG Jian-hua ZHANG Chun-liang +2 位作者 ZHOU Chao LIU Gui-yun ZHOU Wei 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1708-1716,共9页
In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, t... In view of the limitations of solid metal heat sink in the heat dissipation of high power light emitting diode (LED), a kind of miniaturized phase change heat sink is developed for high power LED packaging. First, the fabrication process of miniaturized phase change heat sink is investigated, upon which all parts of the heat sink are fabricated including main-body and end-cover of the heat sink, the formation of three-dimensional boiling structures at the evaporation end, the sintering of the wick, and the encapsulation of high power LED phase change heat sink. Subsequently, with the assistance of the developed testing system, heat transfer performance of the heat sink is tested under the condition of natural convection, upon which the influence of thermal load and working medium on the heat transfer performance is investigated. Finally, the heat transfer performance of the developed miniaturized phase change heat sink is compared with that of metal solid heat sink. Results show that the developed miniaturized phase change heat sink presents much better heat transfer performance over traditional metal solid heat sink, and is suitable for the packaging of high power LED. 展开更多
关键词 miniaturized phase change heat sink three-dimensional microgrooves sintered wick heat transfer performance testing
下载PDF
Numerical investigation of grooves effects on the thermal performance of helically grooved shell and coil tube heat exchanger 被引量:1
19
作者 Mehdi Miansari Mehdi Rajabtabar Darvishi +3 位作者 Davood Toghraie Pouya Barnoon Mojtaba Shirzad As'ad Alizadeh 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期424-434,共11页
Heat exchangers are integral parts of important industrial units such as petrochemicals,medicine and power plants.Due to the importance of systems energy consumption,different modifications have been applied on heat e... Heat exchangers are integral parts of important industrial units such as petrochemicals,medicine and power plants.Due to the importance of systems energy consumption,different modifications have been applied on heat exchangers in terms of size and structure.In this study,a novel heat exchanger with helically grooved annulus shell and helically coiled tube was investigated by numerical simulation.Helically grooves with the same pitch of the helical coil tube and different depth are created on the inner and outer wall of annulus shell to improve the thermal performance of heat exchanger.In the first section,thermal performance of the shell and coil heat exchanger with the helical grooves on its outer shell wall was compared with same but without helical grooves.At the second section,helically grooves created on both outer and inner wall of the annulus shell with different groove depths.The results showed that the heat exchanger with grooves on both inner and outer shell wall has better thermal performance up to 20%compared to the heat exchanger with grooves on only outer shell wall.The highest thermal performance achieves at lower flow rates and higher groove depths whereas the pressure drop did not increase significantly. 展开更多
关键词 Numerical simulation heat transfer Turbulent flow Shell and coil Helically grooved shell heat exchanger
下载PDF
Research on the falling film flow and heat transfer characteristics of FLNG spiral wound heat exchanger under sea conditions 被引量:1
20
作者 Chong-Zheng Sun Liang Liu +1 位作者 Yu-Xing Li Jian-Lu Zhu 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1276-1290,共15页
As the key equipment of floating liquefied natural gas(FLNG)process,the performance of spiral wound heat exchanger(SWHE)influences operation costs and reliability of the whole system.The sea conditions destroy the fal... As the key equipment of floating liquefied natural gas(FLNG)process,the performance of spiral wound heat exchanger(SWHE)influences operation costs and reliability of the whole system.The sea conditions destroy the falling film flow state of the refrigeration and then affect the heat transfer performance of FLNG SWHE.In order to design and optimize the SWHE,a cryogenic experimental device of FLNG process and a numerical model of falling film flow have been constructed to study the effects of sea conditions on the falling film flow and heat transfer characteristics of SWHE.The cryogenic experimental results show that the pitching conditions have larger effects on the heat transfer performance than yawing.Under the pitching angle of 7°,the natural gas temperature and gaseous refrigerant temperature increase by 3.22°C and 7.42°C,respectively.The flow rates of refrigerant and feed natural gas have a great impact on the heat transfer performance of SWHE under pitching and compound sloshing conditions.When the tilt angle increases to 9°,the tube structure with outer diameter D=8 mm and pipe spacing S=4 mm is recommended to reduce the drying area of the pipe wall surface. 展开更多
关键词 FLNG Spiral wound heat exchanger Falling film flow Cryogenic heat transfer Sea condition
下载PDF
上一页 1 2 238 下一页 到第
使用帮助 返回顶部