Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflo...Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflow regimes established in bubble columns.Some effort is also provided to introduce relevant definitions pertaining to thisfield,namely,that of“void fraction”and related(local,chordal,cross-sectional and volumetric)variants.Experimental studies involving different parameters that affect design and operating conditions are also discussed in detail.In the second part of the review,the attention is shifted to cases with internals of various types(perfo-rated plates,baffles,vibrating helical springs,mixers,and heat exchanger tubes)immersed in the bubble columns.It is shown that the presence of these elements has a limited influence on the global column hydrodynamics.However,they can make the homogeneousflow regime more stable in terms of transition gas velocity and transi-tion holdup value.The last section is used to highlight gaps which have not beenfilled yet and future directions of investigation.展开更多
A novel methodology is presented for simultaneously optimizing synthesis and cleaning schedule of flexible heat exchanger network(HEN)by genetic/simulated annealing algorithms(GA/SA).Through taking into account the ef...A novel methodology is presented for simultaneously optimizing synthesis and cleaning schedule of flexible heat exchanger network(HEN)by genetic/simulated annealing algorithms(GA/SA).Through taking into account the effect of fouling process on optimal network topology,a preliminary network structure possessing two-fold oversynthesis is obtained by means of pseudo-temperature enthalpy(T-H)diagram approach prior to simultaneous optimization.Thus,the computational complexity of this problem classified as NP(Non-deterministic Polynomial)-complete can be significantly reduced.The promising matches resulting from preliminary synthesis stage are further optimized in parallel with their heat exchange areas and cleaning schedule.In addition,a novel continu- ous time representation is introduced to subdivide the given time horizon into several variable-size intervals according to operating periods of heat exchangers,and then flexible HEN synthesis can be implemented in dynamic manner.A numerical example is provided to demonstrate that the presented strategy is feasible to decrease the total annual cost(TAC)and further improve network flexibility,but even more important,it may be applied to solve large-scale flexible HEN synthesis problems.展开更多
The process of heat transfer in a HLMC cross-flow around heat-transfer tubes is not yet thoroughly studied. Therefore, it is of great interest to carry out experimental studies for determining the heat transfer charac...The process of heat transfer in a HLMC cross-flow around heat-transfer tubes is not yet thoroughly studied. Therefore, it is of great interest to carry out experimental studies for determining the heat transfer characteristics in a lead coolant cross-flow around tubes. It is also interesting to explore the velocity and temperature fields in a HLMC flow. To achieve this goal, experts of the NNSTU performed the work aimed at the experimental determination of the temperature and velocity fields in high-temperature lead coolant cross-flows around a tube bundle. The experimental studies were carried out in a specially designed high-temperature liquid-metal facility. The experimental facility is a combination of two high-temperature liquid-metal setups, i.e., FT-2 with a lead coolant and FT-1 with a lead-bismuth coolant, united by an experimental site. The experimental site is a model of the steam generator of the BREST-300 reactor facility. The heat-transfer surface is an in-line tube bank of a diameter of 17 × 3.5 mm, which is made of 10H9NSMFB ferritic-martensitic steel. The temperature of the heat-transfer surface is measured with thermocouples of a diameter of 1 mm being installed in the walls of heat-transfer tubes. The velocity and temperature fields in a high-temperature HLMC flow are measured with special sensors installed in the flow cross section between the rows of heat-transfer tubes. The characteristics of heat transfer and velocity fields in a lead coolant flow were studied in different directions of the coolant flow: The vertical (“top-down” and “bottom-up”) and the horizontal ones. The studies were conducted under the following operating conditions: The temperature of lead was t = 450°C - 5000°C, the thermodynamic activity of oxygen was a = 10-5 - 100, and the lead flow through the experimental site was Q = 3 - 6 m3/h, which corresponds to coolant velocities of V = 0.4 - 0.8 m/s. Comprehensive experimental studies of the characteristics of heat transfer in a lead coolant cross-flow around tubes have been carried out for the first time and the dependences for a controlled and regulated content of the thermodynamically active oxygen impurity and sediments of impurities have been obtained. The effect of the oxygen impurity content in the coolant and characteristics of protective oxide coatings on the temperature and velocity fields in a lead coolant flow is revealed. This is because the presence of oxygen in the coolant and oxide coatings on the surface, which restrict the liquid-metal flow, leads to a change in the characteristics of the wall-adjacent region. The obtained experimental data on the distribution of the velocity and temperature fields in a HLMC flow permit studying the heat-transfer processes and, on this basis, creating program codes for engineering calculations of HLMC flows around heat-transfer surfaces.展开更多
A new model is established to describe heat exchanging of the incompletely mixed fluid flowing in the tubes and the unmixed fluid crossing out of the tubes in the heat-exchangers especially in air cooler. In the model...A new model is established to describe heat exchanging of the incompletely mixed fluid flowing in the tubes and the unmixed fluid crossing out of the tubes in the heat-exchangers especially in air cooler. In the model, a new method of analyzing volume is proposed to develop the temperature distribution equations of the two fluids --tw(x) and ta(X,,7"). With tw(x) and ta (x, ,7), the curves of the temperature distribution of the two fluids can be obtained. Also tw(x) and ta(x,n) can be used to calculate parameters of structure of an air cooler and to improve performances of it.展开更多
In the paper, a dynamical model of gas-liquid mixture motion through a pipeline with regard to change of rheological properties that occur as a result of heat-exchange process, is constructed, and the solutions of the...In the paper, a dynamical model of gas-liquid mixture motion through a pipeline with regard to change of rheological properties that occur as a result of heat-exchange process, is constructed, and the solutions of the obtained connected differential equations are given. Analytic expression allowing to determine pressure change along the length of a pipeline, is obtained.展开更多
文摘Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflow regimes established in bubble columns.Some effort is also provided to introduce relevant definitions pertaining to thisfield,namely,that of“void fraction”and related(local,chordal,cross-sectional and volumetric)variants.Experimental studies involving different parameters that affect design and operating conditions are also discussed in detail.In the second part of the review,the attention is shifted to cases with internals of various types(perfo-rated plates,baffles,vibrating helical springs,mixers,and heat exchanger tubes)immersed in the bubble columns.It is shown that the presence of these elements has a limited influence on the global column hydrodynamics.However,they can make the homogeneousflow regime more stable in terms of transition gas velocity and transi-tion holdup value.The last section is used to highlight gaps which have not beenfilled yet and future directions of investigation.
基金Supported by the National Natural Science Foundation of China (20976022) and Dalian University of Technology for Constructing Interdiscipline 'Energy+X'. ACKNOWLEDGEMENTS The authors gratefully acknowledge financial support from Lanzhou Petrochemical Company, PetroChina Company Limited.
文摘A novel methodology is presented for simultaneously optimizing synthesis and cleaning schedule of flexible heat exchanger network(HEN)by genetic/simulated annealing algorithms(GA/SA).Through taking into account the effect of fouling process on optimal network topology,a preliminary network structure possessing two-fold oversynthesis is obtained by means of pseudo-temperature enthalpy(T-H)diagram approach prior to simultaneous optimization.Thus,the computational complexity of this problem classified as NP(Non-deterministic Polynomial)-complete can be significantly reduced.The promising matches resulting from preliminary synthesis stage are further optimized in parallel with their heat exchange areas and cleaning schedule.In addition,a novel continu- ous time representation is introduced to subdivide the given time horizon into several variable-size intervals according to operating periods of heat exchangers,and then flexible HEN synthesis can be implemented in dynamic manner.A numerical example is provided to demonstrate that the presented strategy is feasible to decrease the total annual cost(TAC)and further improve network flexibility,but even more important,it may be applied to solve large-scale flexible HEN synthesis problems.
文摘The process of heat transfer in a HLMC cross-flow around heat-transfer tubes is not yet thoroughly studied. Therefore, it is of great interest to carry out experimental studies for determining the heat transfer characteristics in a lead coolant cross-flow around tubes. It is also interesting to explore the velocity and temperature fields in a HLMC flow. To achieve this goal, experts of the NNSTU performed the work aimed at the experimental determination of the temperature and velocity fields in high-temperature lead coolant cross-flows around a tube bundle. The experimental studies were carried out in a specially designed high-temperature liquid-metal facility. The experimental facility is a combination of two high-temperature liquid-metal setups, i.e., FT-2 with a lead coolant and FT-1 with a lead-bismuth coolant, united by an experimental site. The experimental site is a model of the steam generator of the BREST-300 reactor facility. The heat-transfer surface is an in-line tube bank of a diameter of 17 × 3.5 mm, which is made of 10H9NSMFB ferritic-martensitic steel. The temperature of the heat-transfer surface is measured with thermocouples of a diameter of 1 mm being installed in the walls of heat-transfer tubes. The velocity and temperature fields in a high-temperature HLMC flow are measured with special sensors installed in the flow cross section between the rows of heat-transfer tubes. The characteristics of heat transfer and velocity fields in a lead coolant flow were studied in different directions of the coolant flow: The vertical (“top-down” and “bottom-up”) and the horizontal ones. The studies were conducted under the following operating conditions: The temperature of lead was t = 450°C - 5000°C, the thermodynamic activity of oxygen was a = 10-5 - 100, and the lead flow through the experimental site was Q = 3 - 6 m3/h, which corresponds to coolant velocities of V = 0.4 - 0.8 m/s. Comprehensive experimental studies of the characteristics of heat transfer in a lead coolant cross-flow around tubes have been carried out for the first time and the dependences for a controlled and regulated content of the thermodynamically active oxygen impurity and sediments of impurities have been obtained. The effect of the oxygen impurity content in the coolant and characteristics of protective oxide coatings on the temperature and velocity fields in a lead coolant flow is revealed. This is because the presence of oxygen in the coolant and oxide coatings on the surface, which restrict the liquid-metal flow, leads to a change in the characteristics of the wall-adjacent region. The obtained experimental data on the distribution of the velocity and temperature fields in a HLMC flow permit studying the heat-transfer processes and, on this basis, creating program codes for engineering calculations of HLMC flows around heat-transfer surfaces.
文摘A new model is established to describe heat exchanging of the incompletely mixed fluid flowing in the tubes and the unmixed fluid crossing out of the tubes in the heat-exchangers especially in air cooler. In the model, a new method of analyzing volume is proposed to develop the temperature distribution equations of the two fluids --tw(x) and ta(X,,7"). With tw(x) and ta (x, ,7), the curves of the temperature distribution of the two fluids can be obtained. Also tw(x) and ta(x,n) can be used to calculate parameters of structure of an air cooler and to improve performances of it.
文摘In the paper, a dynamical model of gas-liquid mixture motion through a pipeline with regard to change of rheological properties that occur as a result of heat-exchange process, is constructed, and the solutions of the obtained connected differential equations are given. Analytic expression allowing to determine pressure change along the length of a pipeline, is obtained.