The superconducting magnet system of a fusion reactor plays a vital role in plasma confinement,a process that can be dis-rupted by various operational factors.A critical parameter for evaluating the temperature margin...The superconducting magnet system of a fusion reactor plays a vital role in plasma confinement,a process that can be dis-rupted by various operational factors.A critical parameter for evaluating the temperature margin of superconducting magnets during normal operation is the nuclear heating caused by D-T neutrons.This study investigates the impact of nuclear heat-ing on a superconducting magnet system by employing an improved analysis method that combines neutronics and thermal hydraulics.In the magnet system,toroidal field(TF)magnets are positioned closest to the plasma and bear the highest nuclear-heat load,making them prime candidates for evaluating the influence of nuclear heating on stability.To enhance the modeling accuracy and facilitate design modifications,a parametric TF model that incorporates heterogeneity is established to expedite the optimization design process and enhance the accuracy of the computations.A comparative analysis with a homogeneous TF model reveals that the heterogeneous model improves accuracy by over 12%.Considering factors such as heat load,magnetic-field strength,and cooling conditions,the cooling circuit facing the most severe conditions is selected to calculate the temperature of the superconductor.This selection streamlines the workload associated with thermal-hydraulic analysis.This approach enables a more efficient and precise evaluation of the temperature margin of TF magnets.Moreover,it offers insights that can guide the optimization of both the structure and cooling strategy of superconducting magnet systems.展开更多
The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p...The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.展开更多
Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative coo...Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.展开更多
Thermal damage and thermal fracture of rocks are two important indicators in geothermal mining projects.This paper investigates the effects of heating and water-cooling on granite specimens at various temperatures.The...Thermal damage and thermal fracture of rocks are two important indicators in geothermal mining projects.This paper investigates the effects of heating and water-cooling on granite specimens at various temperatures.The laboratory uniaxial compression experiments were also conducted.Then,a coupled thermo-mechanical ordinary state-based peridynamic(OSB-PD)model and corresponding numerical scheme were developed to simulate the damage of rocks after the heating and cooling processes,and the change of crack evolution process was predicted.The results demonstrate that elevated heating temperatures exacerbate the thermal damage to the specimens,resulting in a decrease in peak strength and an increase in ductility of granite.The escalating occurrence of thermal-induced cracks significantly affects the crack evolution process during the loading phase.The numerical results accurately reproduce the damage and fracture characteristics of the granite under different final heating temperatures(FHTs),which are consistent with the test results in terms of strength,crack evolution process,and failure mode.展开更多
Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building hea...Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.展开更多
Cotton is one of the most important fiber crops that plays a vital role in the textile industry.Its production has been unstable over the years due to climate change induced biotic stresses such as insects,diseases,an...Cotton is one of the most important fiber crops that plays a vital role in the textile industry.Its production has been unstable over the years due to climate change induced biotic stresses such as insects,diseases,and weeds,as well as abiotic stresses including drought,salinity,heat,and cold.Traditional breeding methods have been used to breed climate resilient cotton,but it requires a considerable amount of time to enhance crop tolerance to insect pests and changing climatic conditions.A promising strategy for improving tolerance against these stresses is genetic engineering.This review article discusses the role of genetic engineering in cotton improvement.The essential concepts and techniques include genome editing via clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(CRISPR-Cas9),overexpression of target genes,downregulation using RNA interference(RNAi),and virus-induced gene silencing(VIGS).Notably,the Agrobacterium-mediated transformation has made significant contributions to using these techniques for obtaining stable transgenic plants.展开更多
Background Cotton is a strategically important fibre crop for global textile industry.It profoundly impacts several countries’industrial and agricultural sectors.Sustainable cotton production is continuously threaten...Background Cotton is a strategically important fibre crop for global textile industry.It profoundly impacts several countries’industrial and agricultural sectors.Sustainable cotton production is continuously threatened by the unpre-dictable changes in climate,specifically high temperatures.Breeding heat-tolerant,high-yielding cotton cultivars with wide adaptability to be grown in the regions with rising temperatures is one of the primary objectives of modern cotton breeding programmes.Therefore,the main objective of the current study is to figure out the effective breed-ing approach to imparting heat tolerance as well as the judicious utilization of commercially significant and stress-tolerant attributes in cotton breeding.Initially,the two most notable heat-susceptible(FH-115 and NIAB Kiran)and tolerant(IUB-13 and GH-Mubarak)cotton cultivars were spotted to develop filial and backcross populations to accom-plish the preceding study objectives.The heat tolerant cultivars were screened on the basis of various morphological(seed cotton yield per plant,ginning turnout percentage),physiological(pollen viability,cell membrane thermostabil-ity)and biochemical(peroxidase activity,proline content,hydrogen peroxide content)parameters.Results The results clearly exhibited that heat stress consequently had a detrimental impact on every studied plant trait,as revealed by the ability of crossing and their backcross populations to tolerate high temperatures.However,when considering overall yield,biochemical,and physiological traits,the IUB-13×FH-115 cross went over particularly well at both normal and high temperature conditions.Moreover,overall seed cotton yield per plant exhibited a posi-tive correlation with both pollen viability and antioxidant levels(POD activity and proline content).Conclusions Selection from segregation population and criteria involving pollen viability and antioxidant levels concluded to be an effective strategy for the screening of heat-tolerant cotton germplasms.Therefore,understanding acquired from this study can assist breeders identifying traits that should be prioritized in order to develop climate resilient cotton cultivars.展开更多
Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplish...Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.展开更多
The effect toxic industrial discharge on the environment and ecosystem cannot be overlooked. This is owing to a partial combustion of hydrocarbon arising from industrial activities and human endeavours. As such, this ...The effect toxic industrial discharge on the environment and ecosystem cannot be overlooked. This is owing to a partial combustion of hydrocarbon arising from industrial activities and human endeavours. As such, this investigation focuses on the pressure driven flow and heat propagation of combustible Prandtl-Eyring viscous heating fluid in a horizontal device. The combustion-reaction of the viscoplastic material is considered to be inspired by two-step exothermic reaction. With negligible reactant consumption, the flowing fluid is influenced by a chemical kinetic, activation energy and electromagnetic force. An invariant transformation of the partial derivative model to an ordinary derivative model is obtained through an applied dimensionless variable. The solutions to the unsteady thermal fluid flow model are obtained via a semi-implicit difference scheme, and the outputs of the solution are displayed in plots and tables. As revealed, an enhanced heat propagation is obtained that in turn encourages the combustion process of the system. Also, increasing material dilatant simulated fluid molecular bond and viscosity. Therefore, the outcomes of this study are treasured to the thermal and chemical engineering, and the environmental management.展开更多
The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,...The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,this new heating method presents an opportunity for the development of comprehensive facilities.The parameters for evaluating the effectiveness of such a system are the upper surface layer’s heat flux and temperature.In this paper,thermal resistance analysis calculation based on a simplified model for this unique radiant heating system analysis is presented with the heat transfer mechanism’s evaluation.The results obtained from thermal resistance analysis calculation and numerical simulation indicate that the thermal resistance analysis method is highly accurate with temperature discrepancies ranging from 0.44℃ to−0.44℃ and a heat flux discrepancy of less than 7.54%,which can meet the requirements of practical engineering applications,suggesting a foundation for the prefabricated radiant heating system.展开更多
This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the ...This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the heating of a single nanoparticle or an ensemble thereof,and the dissipation of the energy of nanoparticles due to heat exchange with the environment.The goal is to consider the dependences and values of the temperatures of the nanoparticles and the environment,their time scales,and other parameters that describe these processes.Experimental results and analytical studies on the heating of single metal nanoparticles by laser pulses are discussed,including the laser thresholds for initiating subsequent photothermal processes,how temperature influences the optical properties,and the heating of gold nanoparticles by laser pulses.Experimental studies of the heating of an ensemble of nanoparticles and the results of an analytical study of the heating of an ensemble of nanoparticles and the environment by laser radiation are considered.Nanothermometry methods for nanoparticles under laser heating are considered,including changes in the refractive indices of metals and spectral thermometry of optical scattering of nanoparticles,Raman spectroscopy,the thermal distortion of the refractive index of an environment heated by a nanoparticle,and thermochemical phase transitions in lipid bilayers surrounding a heated nanoparticle.Understanding the sequence of events after radiation absorption and their time scales underlies many applications of nanoparticles.The applicationfields for the laser heating of nanoparticles are reviewed,including thermochemical reactions and selective nanophotothermolysis initiated in the environment by laser-heated nanoparticles,thermal radiation emission by nanoparticles and laser-induced incandescence,electron and ion emission of heated nanoparticles,and optothermal chemical catalysis.Applications of the laser heating of nanoparticles in laser nanomedicine are of particular interest.Significant emphasis is given to the proposed analytical approaches to modeling and calculating the heating processes under the action of a laser pulse on metal nanoparticles,taking into account the temperature dependences of the parameters.The proposed models can be used to estimate the parameters of lasers and nanoparticles in the various applicationfields for the laser heating of nanoparticles.展开更多
The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heati...The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heating has attracted widespread attention due to its low energy consumption and uniform heating advantages.This paper introduces the recent advances in AC heating from the perspective of practical EV applications.First,the performance degradation of EVs in low-temperature environments is introduced briefly.The concept of AC heating and its research methods are provided.Then,the effects of various AC heating methods on battery heating performance are reviewed.Based on existing studies,the main factors that affect AC heating performance are analyzed.Moreover,various heating circuits based on EVs are categorized,and their cost,size,complexity,efficiency,reliability,and heating rate are elaborated and compared.The evolution of AC heaters is presented,and the heaters used in brand vehicles are sorted out.Finally,the perspectives and challenges of AC heating are discussed.This paper can guide the selection of heater implementation methods and the optimization of heating effects for future EV applications.展开更多
Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).How...Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).However,in the process of the TPV moving off the TP requires that the airmass traverse the eastern slope of the Tibetan Plateau(ESTP)where the topography and diabatic heating(DH)conditions rapidly change.How LH gradually replaces SH to become the dominant factor in the development of the TPV over the ESTP is still not very clear.In this paper,an analysis of a typical case of a TPV with a long life history over the ESTP is performed by using multi-sourced meteorological data and model simulations.The results show that SH from the TP surface can change the TPV-associated precipitation distribution by temperature advection after the TPV moves off the TP.The LH can then directly promote the development of the TPV and has a certain guiding effect on the track of the TPV.The SH can control the active area of LH by changing the falling area of the TPV-associated precipitation,so it still plays a key role in the development and tracking of the TPV even though it has moved out of the main body of the TP.展开更多
Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films h...Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.展开更多
During the course of ionospheric heating experiments, researchers at the European Incoherent Scatter Scientific Association (EISCAT) observed an apparent electron density enhancement. The enhancement extended over a w...During the course of ionospheric heating experiments, researchers at the European Incoherent Scatter Scientific Association (EISCAT) observed an apparent electron density enhancement. The enhancement extended over a wide range of altitudes, above the reflection altitude of the high-frequency pump wave. However, whether this enhancement actually corresponds to a true enhancement in electron density remains an open question. When the dispersion relation of ion acoustic waves is followed, the frequency ratio of the enhanced ion line to the background ion line suggests that the profile of the effective ion mass may have remained unchanged. Furthermore, the solar radio flux and ion drift velocity indicate no significant changes in the ion species and their densities. In conclusion, the electron density enhancement observed at EISCAT should not, in fact, be considered a true enhancement.展开更多
We conduct a detailed examination of the magnetic and electrical transport properties in GdAlSi and SmAlGe crystals,which possess a LaPtSi-type structure(space group I4_(1)md).The magnetic susceptibility data unambigu...We conduct a detailed examination of the magnetic and electrical transport properties in GdAlSi and SmAlGe crystals,which possess a LaPtSi-type structure(space group I4_(1)md).The magnetic susceptibility data unambiguously reveal magnetic ordering below a characteristic transition temperature(T_(N)).For GdAlSi,a hysteresis loop is observed in the magnetization and magnetoresistance curves within the ab plane when the magnetic field is applied below T_(N),which is around32 K.Notable specific heat anomalies are detected at 32 K for GdAlSi and 6 K for SmAlGe,confirming the occurrence of magnetic transitions.In addition,the extracted magnetic entropy at high temperatures is consistent with the theoretical value of Rln(2J+1) for J=7/2 in Gd^(3+) and J=5/2 in Sm^(3+),respectively.SmAlGe also exhibits Schottky-like specific heat contributions.Additionally,both GdAlSi and SmAlGe exhibit positive magnetoresistance and a normal Hall effect.展开更多
Stabilization of tearing modes and neoclassical tearing modes is of great importance for tokamak operation.Electron cyclotron waves(ECWs)have been extensively used to stabilize the tearing modes with the virtue of hig...Stabilization of tearing modes and neoclassical tearing modes is of great importance for tokamak operation.Electron cyclotron waves(ECWs)have been extensively used to stabilize the tearing modes with the virtue of highly localized power deposition.Complete suppression of the m/n=2/1 tearing mode(TM)by electron cyclotron resonance heating(ECRH)has been achieved successfully on the J-TEXT tokamak.The effects of ECW deposition location and power amplitude on the 2/1 TM suppression have been investigated.It is found that the suppression is more effective when the ECW power is deposited closer to the rational surface.As the ECW power increases to approximately 230 k W,the 2/1 TM can be completely suppressed.The island rotation frequency is increased when the island width is reduced.The experimental results show that the local heating inside the magnetic island and the resulting temperature perturbation increase at the O-point of the island play dominant roles in TM suppression.As the ECW power increases,the 2/1 island is suppressed to smaller island width,and the flow shear also plays a stabilizing effect on small magnetic islands.With the stabilizing contribution of heating and flow shear,the 2/1 TM can be completely suppressed.展开更多
This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system.Combining the basic theory of heat transfer with the environmental requ...This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system.Combining the basic theory of heat transfer with the environmental requirements of polar drilling operations and the characteristics of polar drilling processes,we analyze the factors that affect the insulation effect of the drilling rig system.These factors include the thermal conductivity of the insulation material,the thickness of the insulation layer,ambient temperature,and wind speed.We optimize the thermal insulation material of the polar drilling rig system using a steady-state method to measure solid thermal conductivity.By analyzing the distribution of temperature in space after heating,we optimize the distribution and air outlet angle of the heater using Fluent hydrodynamics software.The results demonstrate that under polar conditions,polyisocyanurate with stable thermodynamic properties is selected as the thermal insulation material.The selection of thermal insulation material and thickness significantly affects the thermal insulation effect of the system but has little effect on its heating effect.Moreover,when the air outlet angle of the heater is set to 32.5°,the heating efficiency of the system can be effectively improved.According to heat transfer equations and heat balance theory,we determine that the heating power required for the system to reach 5°C is close to numerical simulation.展开更多
We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magne...We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at T_(p)~140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e.,?L_(c)/L_(c)~0.062%. The structural characterization confines that there is no structure transition below and above T_(p). All these results suggest that the nonmagnetic transition of SrCu_(4-x)P_(2) could be associated with structural distortion.展开更多
The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities a...The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities and many different structures,are regarded as key materials to improve the performance of electronic devices.We provide a critical overview of carbonbased 3D thermally conductive networks,emphasizing their preparation-structure-property relationships and their applications in different scenarios.A detailed discussion of the microscopic principles of thermal conductivity is provided,which is crucial for increasing it.This is followed by an in-depth account of the construction of 3D networks using different carbon materials,such as graphene,carbon foam,and carbon nanotubes.Techniques for the assembly of two-dimensional graphene into 3D networks and their effects on thermal conductivity are emphasized.Finally,the existing challenges and future prospects for 3D carbon-based thermally conductive networks are discussed.展开更多
基金the National Natural Science Foundation of China(Nos.52222701,52077211,and 52307034).
文摘The superconducting magnet system of a fusion reactor plays a vital role in plasma confinement,a process that can be dis-rupted by various operational factors.A critical parameter for evaluating the temperature margin of superconducting magnets during normal operation is the nuclear heating caused by D-T neutrons.This study investigates the impact of nuclear heat-ing on a superconducting magnet system by employing an improved analysis method that combines neutronics and thermal hydraulics.In the magnet system,toroidal field(TF)magnets are positioned closest to the plasma and bear the highest nuclear-heat load,making them prime candidates for evaluating the influence of nuclear heating on stability.To enhance the modeling accuracy and facilitate design modifications,a parametric TF model that incorporates heterogeneity is established to expedite the optimization design process and enhance the accuracy of the computations.A comparative analysis with a homogeneous TF model reveals that the heterogeneous model improves accuracy by over 12%.Considering factors such as heat load,magnetic-field strength,and cooling conditions,the cooling circuit facing the most severe conditions is selected to calculate the temperature of the superconductor.This selection streamlines the workload associated with thermal-hydraulic analysis.This approach enables a more efficient and precise evaluation of the temperature margin of TF magnets.Moreover,it offers insights that can guide the optimization of both the structure and cooling strategy of superconducting magnet systems.
基金Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization(South China University of Technology)(2013A061401005)Research Fund(JMSWFW-2110-044)from Zhongshan Jiaming Electric Power Co.,Ltd.
文摘The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak.
基金supported by the National Science Fund for Distinguished Young Scholars(22125804)the National Natural Science Foundation of China(21808110,22078155,and 21878149).
文摘Temperature-swing adsorption(TSA)is an effective technique for CO_(2) capture,but the temperature swing procedure is energy-intensive.Herein,we report a low-energy-consumption system by combining passive radiative cooling and solar heating for the uptake of CO_(2) on commercial activated carbons(CACs).During adsorption,the adsorbents are coated with a layer of hierarchically porous poly(vinylidene fluoride-co-hexafluoropropene)[P(VdF-HFP)HP],which cools the adsorbents to a low temperature under sunlight through radiative cooling.For desorption,CACs with broad absorption of the solar spectrum are exposed to light irradiation for heating.The heating and cooling processes are completely driven by solar energy.Adsorption tests under mimicked sunlight using the CACs show that the performance of this system is comparable to that of the traditional ones.Furthermore,under real sunlight irradiation,the adsorption capacity of the CACs can be well maintained after multiple cycles.The present work may inspire the development of new temperature swing procedures with little energy consumption.
基金funded by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX22_0613)the National Natural Science Foundation of China(Grant Nos.41831278 and 51878249).
文摘Thermal damage and thermal fracture of rocks are two important indicators in geothermal mining projects.This paper investigates the effects of heating and water-cooling on granite specimens at various temperatures.The laboratory uniaxial compression experiments were also conducted.Then,a coupled thermo-mechanical ordinary state-based peridynamic(OSB-PD)model and corresponding numerical scheme were developed to simulate the damage of rocks after the heating and cooling processes,and the change of crack evolution process was predicted.The results demonstrate that elevated heating temperatures exacerbate the thermal damage to the specimens,resulting in a decrease in peak strength and an increase in ductility of granite.The escalating occurrence of thermal-induced cracks significantly affects the crack evolution process during the loading phase.The numerical results accurately reproduce the damage and fracture characteristics of the granite under different final heating temperatures(FHTs),which are consistent with the test results in terms of strength,crack evolution process,and failure mode.
基金support from the Research Grants Council of the Hong Kong Special Administrative Region,China(PolyU152052/21E)Green Tech Fund of Hong Kong(Project No.:GTF202220106)+1 种基金Innovation and Technology Fund of the Hong Kong Special Administrative Region,China(ITP/018/21TP)PolyU Endowed Young Scholars Scheme(Project No.:84CC).
文摘Maintaining thermal comfort within the human body is crucial for optimal health and overall well-being.By merely broadening the setpoint of indoor temperatures,we could significantly slash energy usage in building heating,ventilation,and air-conditioning systems.In recent years,there has been a surge in advancements in personal thermal management(PTM),aiming to regulate heat and moisture transfer within our immediate surroundings,clothing,and skin.The advent of PTM is driven by the rapid development in nano/micro-materials and energy science and engineering.An emerging research area in PTM is personal radiative thermal management(PRTM),which demonstrates immense potential with its high radiative heat transfer efficiency and ease of regulation.However,it is less taken into account in traditional textiles,and there currently lies a gap in our knowledge and understanding of PRTM.In this review,we aim to present a thorough analysis of advanced textile materials and technologies for PRTM.Specifically,we will introduce and discuss the underlying radiation heat transfer mechanisms,fabrication methods of textiles,and various indoor/outdoor applications in light of their different regulation functionalities,including radiative cooling,radiative heating,and dual-mode thermoregulation.Furthermore,we will shine a light on the current hurdles,propose potential strategies,and delve into future technology trends for PRTM with an emphasis on functionalities and applications.
文摘Cotton is one of the most important fiber crops that plays a vital role in the textile industry.Its production has been unstable over the years due to climate change induced biotic stresses such as insects,diseases,and weeds,as well as abiotic stresses including drought,salinity,heat,and cold.Traditional breeding methods have been used to breed climate resilient cotton,but it requires a considerable amount of time to enhance crop tolerance to insect pests and changing climatic conditions.A promising strategy for improving tolerance against these stresses is genetic engineering.This review article discusses the role of genetic engineering in cotton improvement.The essential concepts and techniques include genome editing via clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(CRISPR-Cas9),overexpression of target genes,downregulation using RNA interference(RNAi),and virus-induced gene silencing(VIGS).Notably,the Agrobacterium-mediated transformation has made significant contributions to using these techniques for obtaining stable transgenic plants.
基金Centre for Advance Studies in Agricultural Food Security and Punjab Agricultural Research Board for providing funds under CAS-PARB project(No.964).
文摘Background Cotton is a strategically important fibre crop for global textile industry.It profoundly impacts several countries’industrial and agricultural sectors.Sustainable cotton production is continuously threatened by the unpre-dictable changes in climate,specifically high temperatures.Breeding heat-tolerant,high-yielding cotton cultivars with wide adaptability to be grown in the regions with rising temperatures is one of the primary objectives of modern cotton breeding programmes.Therefore,the main objective of the current study is to figure out the effective breed-ing approach to imparting heat tolerance as well as the judicious utilization of commercially significant and stress-tolerant attributes in cotton breeding.Initially,the two most notable heat-susceptible(FH-115 and NIAB Kiran)and tolerant(IUB-13 and GH-Mubarak)cotton cultivars were spotted to develop filial and backcross populations to accom-plish the preceding study objectives.The heat tolerant cultivars were screened on the basis of various morphological(seed cotton yield per plant,ginning turnout percentage),physiological(pollen viability,cell membrane thermostabil-ity)and biochemical(peroxidase activity,proline content,hydrogen peroxide content)parameters.Results The results clearly exhibited that heat stress consequently had a detrimental impact on every studied plant trait,as revealed by the ability of crossing and their backcross populations to tolerate high temperatures.However,when considering overall yield,biochemical,and physiological traits,the IUB-13×FH-115 cross went over particularly well at both normal and high temperature conditions.Moreover,overall seed cotton yield per plant exhibited a posi-tive correlation with both pollen viability and antioxidant levels(POD activity and proline content).Conclusions Selection from segregation population and criteria involving pollen viability and antioxidant levels concluded to be an effective strategy for the screening of heat-tolerant cotton germplasms.Therefore,understanding acquired from this study can assist breeders identifying traits that should be prioritized in order to develop climate resilient cotton cultivars.
文摘Successfully utilized non-axisymmetric endwalls to enhance turbine efficiencies(aerodynamic and turbine inlet temperatures)by controlling the characteristics of the secondary flow in a blade passage.This is accomplished by steady-state numerical hydrodynamics and deep knowledge of the field of flow.Because of the interaction between mainstream and purge flow contributing supplementary losses in the stage,non-axisymmetric endwalls are highly susceptible to the inception of purge flow exit compared to the flat and any advantage rapidly vanishes.The conclusions reveal that the supreme endwall pattern could yield a lowering of the gross pressure loss at the design stage and is related to the size of the top-loss location being productively lowered.This has led to diminished global thermal exchange lowered in the passage of the vane alone.The reverse flow adjacent to the suction side corner of the endwall is migrated farther from the vane surface,as the deviated pressure spread on the endwall accelerates the flow and progresses the reverse flow core still downstream.The depleted association between the tornado-like vortex and the corner vortex adjacent to the suction side corner of the endwall is the dominant mechanism of control in the contoured end wall.In this publication,we show that the non-axisymmetric endwall contouring by selective numerical shape change method at most prominent locations is advantageous in lowering the thermal load in turbines to augment the net heat flux reduction as well as the aerodynamic performance using multi-objective optimization.
文摘The effect toxic industrial discharge on the environment and ecosystem cannot be overlooked. This is owing to a partial combustion of hydrocarbon arising from industrial activities and human endeavours. As such, this investigation focuses on the pressure driven flow and heat propagation of combustible Prandtl-Eyring viscous heating fluid in a horizontal device. The combustion-reaction of the viscoplastic material is considered to be inspired by two-step exothermic reaction. With negligible reactant consumption, the flowing fluid is influenced by a chemical kinetic, activation energy and electromagnetic force. An invariant transformation of the partial derivative model to an ordinary derivative model is obtained through an applied dimensionless variable. The solutions to the unsteady thermal fluid flow model are obtained via a semi-implicit difference scheme, and the outputs of the solution are displayed in plots and tables. As revealed, an enhanced heat propagation is obtained that in turn encourages the combustion process of the system. Also, increasing material dilatant simulated fluid molecular bond and viscosity. Therefore, the outcomes of this study are treasured to the thermal and chemical engineering, and the environmental management.
基金Project(NB-2020-JG-07)supported by the Research and Engineering Application of Key Technologies for New Building Industrialization Project of China Northwest Architectural Design and Research Institute Co.,Ltd.Project(2023-CXTD-29)supported by the Key Scientific and Technological Innovation Team of Shaanxi Province,ChinaProject supported by the K.C.Wong Education Foundation。
文摘The utilization of prefabricated light modular radiant heating system has demonstrated significant increases in heat transfer efficiency and energy conservation capabilities.Within prefabricated building construction,this new heating method presents an opportunity for the development of comprehensive facilities.The parameters for evaluating the effectiveness of such a system are the upper surface layer’s heat flux and temperature.In this paper,thermal resistance analysis calculation based on a simplified model for this unique radiant heating system analysis is presented with the heat transfer mechanism’s evaluation.The results obtained from thermal resistance analysis calculation and numerical simulation indicate that the thermal resistance analysis method is highly accurate with temperature discrepancies ranging from 0.44℃ to−0.44℃ and a heat flux discrepancy of less than 7.54%,which can meet the requirements of practical engineering applications,suggesting a foundation for the prefabricated radiant heating system.
文摘This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the heating of a single nanoparticle or an ensemble thereof,and the dissipation of the energy of nanoparticles due to heat exchange with the environment.The goal is to consider the dependences and values of the temperatures of the nanoparticles and the environment,their time scales,and other parameters that describe these processes.Experimental results and analytical studies on the heating of single metal nanoparticles by laser pulses are discussed,including the laser thresholds for initiating subsequent photothermal processes,how temperature influences the optical properties,and the heating of gold nanoparticles by laser pulses.Experimental studies of the heating of an ensemble of nanoparticles and the results of an analytical study of the heating of an ensemble of nanoparticles and the environment by laser radiation are considered.Nanothermometry methods for nanoparticles under laser heating are considered,including changes in the refractive indices of metals and spectral thermometry of optical scattering of nanoparticles,Raman spectroscopy,the thermal distortion of the refractive index of an environment heated by a nanoparticle,and thermochemical phase transitions in lipid bilayers surrounding a heated nanoparticle.Understanding the sequence of events after radiation absorption and their time scales underlies many applications of nanoparticles.The applicationfields for the laser heating of nanoparticles are reviewed,including thermochemical reactions and selective nanophotothermolysis initiated in the environment by laser-heated nanoparticles,thermal radiation emission by nanoparticles and laser-induced incandescence,electron and ion emission of heated nanoparticles,and optothermal chemical catalysis.Applications of the laser heating of nanoparticles in laser nanomedicine are of particular interest.Significant emphasis is given to the proposed analytical approaches to modeling and calculating the heating processes under the action of a laser pulse on metal nanoparticles,taking into account the temperature dependences of the parameters.The proposed models can be used to estimate the parameters of lasers and nanoparticles in the various applicationfields for the laser heating of nanoparticles.
基金supported in part by the National Key Research and Development Program of China under Grant 2021YFB1600200in part by the Shaanxi Province Postdoctoral Research Project under grant 2023BSHEDZZ223+3 种基金in part by the Fundamental Research Funds for the Central Universities,CHD,under grant 300102383101in part by the Shaanxi Province Qinchuangyuan High-Level Innovation and Entrepreneurship Talent Project under grant QCYRCXM-2023-112the Key Research and Development Program of Shaanxi Province under grant 2024GX-YBXM-442in part by the National Natural Science Foundation of China under grand 62373224.
文摘The significant decrease in battery performance at low temperatures is one of the critical challenges that electric vehicles(EVs)face,thereby affecting the penetration rate in cold regions.Alternating current(AC)heating has attracted widespread attention due to its low energy consumption and uniform heating advantages.This paper introduces the recent advances in AC heating from the perspective of practical EV applications.First,the performance degradation of EVs in low-temperature environments is introduced briefly.The concept of AC heating and its research methods are provided.Then,the effects of various AC heating methods on battery heating performance are reviewed.Based on existing studies,the main factors that affect AC heating performance are analyzed.Moreover,various heating circuits based on EVs are categorized,and their cost,size,complexity,efficiency,reliability,and heating rate are elaborated and compared.The evolution of AC heaters is presented,and the heaters used in brand vehicles are sorted out.Finally,the perspectives and challenges of AC heating are discussed.This paper can guide the selection of heater implementation methods and the optimization of heating effects for future EV applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.42175002,42030611,42075013)the Natural Science Foundation of Sichuan,China(Grant No.2023NSFSC0242)the Innovation Team Fund of Southwest Regional Meteorological Center,China Meteorological Administration(Grant No.XNQYCXTD-202202)。
文摘Existing studies contend that latent heating(LH)will replace sensible heating(SH)to become the dominant factor affecting the development of the Tibetan Plateau vortex(TPV)after it moves off the Tibetan Plateau(TP).However,in the process of the TPV moving off the TP requires that the airmass traverse the eastern slope of the Tibetan Plateau(ESTP)where the topography and diabatic heating(DH)conditions rapidly change.How LH gradually replaces SH to become the dominant factor in the development of the TPV over the ESTP is still not very clear.In this paper,an analysis of a typical case of a TPV with a long life history over the ESTP is performed by using multi-sourced meteorological data and model simulations.The results show that SH from the TP surface can change the TPV-associated precipitation distribution by temperature advection after the TPV moves off the TP.The LH can then directly promote the development of the TPV and has a certain guiding effect on the track of the TPV.The SH can control the active area of LH by changing the falling area of the TPV-associated precipitation,so it still plays a key role in the development and tracking of the TPV even though it has moved out of the main body of the TP.
基金supported by the National Natural Science Foundation of China(22275180)the National Key Research and Development Program of China(2019YFA0405600)the Collaborative Innovation Program of Hefei Science Center,CAS,and the University Synergy Innovation Program of Anhui Province(GXXT-2023-031).
文摘Cadmium sulfide(CdS)is an n-type semiconductor with excellent electrical conductivity that is widely used as an electron transport material(ETM)in solar cells.At present,numerous methods for preparing CdS thin films have emerged,among which magnetron sputtering(MS)is one of the most commonly used vacuum techniques.For this type of technique,the substrate temperature is one of the key deposition parameters that affects the interfacial properties between the target film and substrate,determining the specific growth habits of the films.Herein,the effect of substrate temperature on the microstructure and electrical properties of magnetron-sputtered CdS(MS-CdS)films was studied and applied for the first time in hydrothermally deposited antimony selenosulfide(Sb_(2)(S,Se)_(3))solar cells.Adjusting the substrate temperature not only results in the design of the flat and dense film with enhanced crystallinity but also leads to the formation of an energy level arrangement with a Sb_(2)(S,Se)_(3)layer that is more favorable for electron transfer.In addition,we developed an oxygen plasma treatment for CdS,reducing the parasitic absorption of the device and resulting in an increase in the short-circuit current density of the solar cell.This study demonstrates the feasibility of MS-CdS in the fabrication of hydrothermal Sb_(2)(S,Se)_(3)solar cells and provides interface optimization strategies to improve device performance.
基金supported by research organizations in China (CRIRP), Finland (SA), Japan (NIPR and STEL), Norway (NFR), Sweden (VR), and the United Kingdom (NERC)supported by the Taishan Scholars Project of Shandong Province (Grant No. ts20190968)supported by the foundation of National Key Laboratory of Electromagnetic Environment (Grant No. 6142403230303)
文摘During the course of ionospheric heating experiments, researchers at the European Incoherent Scatter Scientific Association (EISCAT) observed an apparent electron density enhancement. The enhancement extended over a wide range of altitudes, above the reflection altitude of the high-frequency pump wave. However, whether this enhancement actually corresponds to a true enhancement in electron density remains an open question. When the dispersion relation of ion acoustic waves is followed, the frequency ratio of the enhanced ion line to the background ion line suggests that the profile of the effective ion mass may have remained unchanged. Furthermore, the solar radio flux and ion drift velocity indicate no significant changes in the ion species and their densities. In conclusion, the electron density enhancement observed at EISCAT should not, in fact, be considered a true enhancement.
基金supported by the National Natural Science Foundation of China(Grant No.12074425)the National Key R&D Program of China(Grant No.2019YFA0308602)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Research Funds of Renmin University of China(Grant No.23XNKJ22)。
文摘We conduct a detailed examination of the magnetic and electrical transport properties in GdAlSi and SmAlGe crystals,which possess a LaPtSi-type structure(space group I4_(1)md).The magnetic susceptibility data unambiguously reveal magnetic ordering below a characteristic transition temperature(T_(N)).For GdAlSi,a hysteresis loop is observed in the magnetization and magnetoresistance curves within the ab plane when the magnetic field is applied below T_(N),which is around32 K.Notable specific heat anomalies are detected at 32 K for GdAlSi and 6 K for SmAlGe,confirming the occurrence of magnetic transitions.In addition,the extracted magnetic entropy at high temperatures is consistent with the theoretical value of Rln(2J+1) for J=7/2 in Gd^(3+) and J=5/2 in Sm^(3+),respectively.SmAlGe also exhibits Schottky-like specific heat contributions.Additionally,both GdAlSi and SmAlGe exhibit positive magnetoresistance and a normal Hall effect.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(No.2019YFE03010004)the Hubei Provincial Natural Science Foundation of China(No.2022CFA072)National Natural Science Foundation of China(No.51821005)。
文摘Stabilization of tearing modes and neoclassical tearing modes is of great importance for tokamak operation.Electron cyclotron waves(ECWs)have been extensively used to stabilize the tearing modes with the virtue of highly localized power deposition.Complete suppression of the m/n=2/1 tearing mode(TM)by electron cyclotron resonance heating(ECRH)has been achieved successfully on the J-TEXT tokamak.The effects of ECW deposition location and power amplitude on the 2/1 TM suppression have been investigated.It is found that the suppression is more effective when the ECW power is deposited closer to the rational surface.As the ECW power increases to approximately 230 k W,the 2/1 TM can be completely suppressed.The island rotation frequency is increased when the island width is reduced.The experimental results show that the local heating inside the magnetic island and the resulting temperature perturbation increase at the O-point of the island play dominant roles in TM suppression.As the ECW power increases,the 2/1 island is suppressed to smaller island width,and the flow shear also plays a stabilizing effect on small magnetic islands.With the stabilizing contribution of heating and flow shear,the 2/1 TM can be completely suppressed.
基金supported by the Key-Area Research and Development Program of Guangdong Province,Research on the Method of Heat Preservation and Heating for the Drilling System of Polar Offshore Drilling Platform (No.2020B1111010001).
文摘This study investigates the heat dissipation mechanism of the insulation layer and other plane insulation layers in the polar drilling rig system.Combining the basic theory of heat transfer with the environmental requirements of polar drilling operations and the characteristics of polar drilling processes,we analyze the factors that affect the insulation effect of the drilling rig system.These factors include the thermal conductivity of the insulation material,the thickness of the insulation layer,ambient temperature,and wind speed.We optimize the thermal insulation material of the polar drilling rig system using a steady-state method to measure solid thermal conductivity.By analyzing the distribution of temperature in space after heating,we optimize the distribution and air outlet angle of the heater using Fluent hydrodynamics software.The results demonstrate that under polar conditions,polyisocyanurate with stable thermodynamic properties is selected as the thermal insulation material.The selection of thermal insulation material and thickness significantly affects the thermal insulation effect of the system but has little effect on its heating effect.Moreover,when the air outlet angle of the heater is set to 32.5°,the heating efficiency of the system can be effectively improved.According to heat transfer equations and heat balance theory,we determine that the heating power required for the system to reach 5°C is close to numerical simulation.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2023YFA1607403,2021YFA1600201,and 2022YFA1602603)the Natural Science Foundation of China (Grant Nos.U19A2093,U2032214,and U2032163)+5 种基金the Collaborative Innovation Program of Hefei Science Center,CAS (Grant No.2019HSC-CIP 001)the Youth Innovation Promotion Association of CAS (Grant No.2021117)the Natural Science Foundation of Anhui Province (No.1908085QA15)the HFIPS Director’s Fund (Grant No.YZJJQY202304)the CASHIPS Director’s Fund (Grant No.YZJJ2022QN36)supported by the High Magnetic Field Laboratory of Anhui Province。
文摘We report a systematic study on layered metal SrCu_(4-x)P_(2) single crystals via transport, magnetization, thermodynamic measurements and structural characterization. We find that the crystals show large linear magnetoresistance without any sign of saturation with a magnetic field up to 30T. We also observe a phase transition with significant anomalies in resistivity and heat capacity at T_(p)~140 K. Thermal expansion measurement reveals a subtle lattice parameter variation near Tp, i.e.,?L_(c)/L_(c)~0.062%. The structural characterization confines that there is no structure transition below and above T_(p). All these results suggest that the nonmagnetic transition of SrCu_(4-x)P_(2) could be associated with structural distortion.
文摘The advent of the 5G era has stimulated the rapid development of high power electronics with dense integration.Three-dimensional(3D)thermally conductive networks,possessing high thermal and electrical conductivities and many different structures,are regarded as key materials to improve the performance of electronic devices.We provide a critical overview of carbonbased 3D thermally conductive networks,emphasizing their preparation-structure-property relationships and their applications in different scenarios.A detailed discussion of the microscopic principles of thermal conductivity is provided,which is crucial for increasing it.This is followed by an in-depth account of the construction of 3D networks using different carbon materials,such as graphene,carbon foam,and carbon nanotubes.Techniques for the assembly of two-dimensional graphene into 3D networks and their effects on thermal conductivity are emphasized.Finally,the existing challenges and future prospects for 3D carbon-based thermally conductive networks are discussed.