期刊文献+
共找到8,310篇文章
< 1 2 250 >
每页显示 20 50 100
Increasing the Efficiency and Level of Environmental Safety of Pro-Environmental City Heat Supply Technologies by Low Power Nuclear Plants
1
作者 Vladimir Kravchenko Igor Kozlov +3 位作者 Volodymyr Vashchenko Iryna Korduba Andrew Overchenko Serhii Tsybytovskyi 《World Journal of Nuclear Science and Technology》 CAS 2024年第2期107-117,共11页
In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is ... In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers. 展开更多
关键词 Low-Capacity Nuclear power Plants Environmental Friendliness of the Thermal power Generation Mode heat Generation Condensation Mode heat Supply
下载PDF
Performance of Gas-Steam Combined Cycle Cogeneration Units Influenced by Heating Network Terminal Steam Parameters
2
作者 Guanglu Xie Zhimin Xue +5 位作者 Bo Xiong Yaowen Huang Chaoming Chen Qing Liao Cheng Yang Xiaoqian Ma 《Energy Engineering》 EI 2024年第6期1495-1519,共25页
The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p... The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak. 展开更多
关键词 Gas-steam combined cycle cogeneration of heating and power steam network inverse problem operating performance
下载PDF
Optimization of Intermittent Variable Power Microwave Heating Process for Blueberry Pulp
3
作者 Xue Liang-liang Gao Rui-li +1 位作者 Song Ruo-nan Zheng Xian-zhe 《Journal of Northeast Agricultural University(English Edition)》 2023年第4期63-74,共12页
To improve heating uniformity and anthocyanin content of the blueberry pulp under microwave heating,the intermittent variable power microwave heating technology was introduced in the study.The effects of technology pa... To improve heating uniformity and anthocyanin content of the blueberry pulp under microwave heating,the intermittent variable power microwave heating technology was introduced in the study.The effects of technology parameters in terms of high microwave intensity heating time,intermittent time,low microwave intensity and low microwave intensity heating time on the blueberry pulp quality parameters(heating uniformity,average moisture content,the highest temperature and anthocyanin content)were investigated by using the response surface method.The results showed that the longer heating time under different microwave intensities resulted in the poorer heating uniformity.The intermittent stage promoted heat and mass transfer within the pulp and reduced the temperature difference and moisture gradient within the pulp,which enhanced desired uniformity of temperature and moisture distribution before entering the low microwave intensity heating stage.Therefore,the longer the intermittent time,the greater the heating uniformity.The optimal parameters were developed as high microwave intensity of 4 W·g^(-1),high microwave intensity heating time of 9.86 min,intermittent time of 10 min,low microwave intensity of 2.2 W·g^(-1)and low microwave intensity heating time of 6 min.This research might provide guidance for microwave heating berry fruits. 展开更多
关键词 blueberry pulp intermittent variable power microwave heating UNIFORMITY ANTHOCYANIN
下载PDF
Study on Matching a 300 MVA Motor Generator with an Ohmic Heating Power Supply in HL-2M 被引量:6
4
作者 彭建飞 宣伟民 +3 位作者 王海兵 李华俊 王英翘 王树锦 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第3期300-302,共3页
A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole ... A new 300 MVA/1350 MJ motor generator (MG) will be built to feed all of the poloidal field power supplies (PFPS) and auxiliary heating power supplies of the HL-2M tokamak. The MG has a vertical-shaft salient pole 6-phase synchronous generator and a coaxial 8500 kW induction motor. The Ohmic heating power supply (OHPS) consisting of 4-quadrant DC pulsed convertor is the one with the highest parameters among the PFPS. Therefore, the match between the generator and the OHPS is very important. The matching study with Matlab/Simulink is described in this paper. The simulation results show that the subtransient reactance of the generator is closely related to the inversion operation of the OHPS. By setting various subtransient reactance in the simulation generator model and considering the cost reduction, the optimized parameters are obtained as xd" = 0.405 p.u. at 100 Hz for the generator. The models built in the simulation can be used as an important tool for studying the dynamic characteristics and the control strategy of other HL-2M PFPSes. 展开更多
关键词 motor generator ohmic heating power supply load matching six-phase gen-erator subtransient reactance
下载PDF
Off-Design Simulation of a CSP Power Plant Integrated with aWaste Heat Recovery System
5
作者 T.E.Boukelia A.Bourouis +1 位作者 M.E.Abdesselem M.S.Mecibah 《Energy Engineering》 EI 2023年第11期2449-2467,共19页
Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high sola... Concentrating Solar Power(CSP)plants offer a promising way to generate low-emission energy.However,these plants face challenges such as reduced sunlight during winter and cloudy days,despite being located in high solar radiation areas.Furthermore,their dispatch capacities and yields can be affected by high electricity consumption,particularly at night.The present work aims to develop an off-design model that evaluates the hourly and annual performances of a parabolic trough power plant(PTPP)equipped with a waste heat recovery system.The study aims to compare the performances of this new layout with those of the conventional Andasol 1 plant,with the aim of assessing the improvements achieved in the new design.Based on the results,it can be concluded that the new layout has increased the annual generated power to almost 183 GWh(an increase of about 7.60% is achieved compared to the Andasol 1 layout that generates 169 GWh annually).Additionally,the proposed installation has achieved an efficiency of 20.55%,which represents a 7.87% increase compared to the previous design(19.05%).The Levelized Cost of Electricity(LCOE)of the new layout has been reduced by more than 5.8% compared to the Andasol 1 plant.Specifically,it has decreased from 13.11 to 12.35 c/kWh.This reduction in LCOE highlights the improved cost-effectiveness of the newlayout,making it amore economically viable option for generating electricity compared to the conventional Andasol 1 plant. 展开更多
关键词 Dispatch capacity organic Rankine cycle parabolic trough solar power plant PERFORMANCES waste heat recovery
下载PDF
WHR (Waste Heat Technology) Method in Tri-generation Model 被引量:2
6
作者 Imrich Discantiny 《Journal of Geological Resource and Engineering》 2015年第1期37-41,共5页
This paper is focused on description of cool production in using WHR (Waste Heat Technology) Technology-a new method of centralized production of heat by using the waste heat from generated exhaust gas, which has be... This paper is focused on description of cool production in using WHR (Waste Heat Technology) Technology-a new method of centralized production of heat by using the waste heat from generated exhaust gas, which has been in 2009 developed and operated by companies HELORO s.r.o, and COMTHERM s.r.o. 展开更多
关键词 NG (natural gas) GB (gas boiler) CHP (combined heat power CHPC (combined heat power cool) CGU(co-generation unit) ABSU (absorption unit) TC (thermal condenser) HE1 HE2 heat exchanger).
下载PDF
Power Compensation for ICRF Heating in EAST
7
作者 陈根 秦成明 +3 位作者 毛玉周 赵燕平 袁帅 张新军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第8期870-874,共5页
The source system covering a working frequency range of 24 MHz to 70 MHz with a total maximum output power of 12 MW has already been fabricated for Ion Cyclotron Range of Frequency(ICRF) heating in EAST from 2012. T... The source system covering a working frequency range of 24 MHz to 70 MHz with a total maximum output power of 12 MW has already been fabricated for Ion Cyclotron Range of Frequency(ICRF) heating in EAST from 2012. There are two continuous wave(CW) antennas consisting of four launching elements each fed by a separate 1.5 MW transmitter. Due to the strong mutual coupling among the launching elements, the injection power for launching elements should be imbalance to keep the k||(parallel wave number) spectrum of the launcher symmetric for ICRF heating. Cross power induced by the mutual coupling will also induce many significant issues,such as an uncontrollable phase of currents in launching elements, high voltage standing wave ratio(VSWR), and impedance mismatching. It is necessary to develop a power compensation system for antennas to keep the power balance between the feed points. The power balance system consists of two significant parts: a decoupler and phase control. The decoupler helps to achieve ports isolation to make the differential phase controllable and compensate partly cross power. After that, the differential phase of 0 or π will keep the power balance of two feed points completely. The first power compensation system consisting of four decouplers was assembled and tested for the port B antenna at the working frequency of 35 MHz. With the application of the power compensation system, the power balance, phase feedback control, and voltage standing wave ratio(VSWR) had obviously been improved in the 2015 EAST campaign. 展开更多
关键词 EAST ICRF heating power compensation
下载PDF
Experimental Study on the Performance of ORC System Based on Ultra-Low Temperature Heat Sources
8
作者 Tianyu Zhou Liang Hao +2 位作者 Xin Xu Meng Si Lian Zhang 《Energy Engineering》 EI 2024年第1期145-168,共24页
This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.Th... This paper discussed the experimental results of the performance of an organic Rankine cycle(ORC)system with an ultra-low temperature heat source.The low boiling point working medium R134a was adopted in the system.The simulated heat source temperature(SHST)in this work was set from 39.51°C to 48.60°C by the simulated heat source module.The influence of load percentage of simulated heat source(LPSHS)between 50%and 70%,the rotary valve opening(RVO)between 20%and 100%,the resistive load between 36Ωand 180Ωor the no-load of the generator,as well as the autumn and winter ambient temperature on the system performance were studied.The results showed that the stability of the system was promoted when the generator had a resistive load.The power generation(PG)and generator speed(GS)of the system in autumn were better than in winter,but the expander pressure ratio(EPR)was lower than in winter.Keep RVO unchanged,the SHST,the mass flow rate(MFR)of the working medium,GS,and the PG of the system increased with the increasing of LPSHS for different generator resistance load values.When the RVO was 60%,LPSHS was 70%,the SHST was 44.15°C and the resistive load was 72Ω,the highest PG reached 15.11 W.Finally,a simulation formula was obtained for LPSHS,resistance load,and PG,and its correlation coefficient was between 0.9818 and 0.9901.The formula can accurately predict the PG.The experimental results showed that the standard deviation between the experimental and simulated values was below 0.0792,and the relative error was within±5%. 展开更多
关键词 ORC load percentage of simulated heat source resistive load rotary valve opening power generation
下载PDF
Thermo-economic Investigation of an Enhanced Geothermal System Organic Rankine Cycle and Combined Heating and Power System
9
作者 WANG Lingbao BU Xianbiao LI Huashan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期1958-1966,共9页
As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon... As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon neutralization. The main challenge for EGSs is to reduce the investment cost. In the present study, thermo-economic investigations of EGS projects are conducted. The effects of geofluid mass flow rate, wellhead temperature and loss rate on the thermo-economic performance of the EGS organic Rankine cycle(ORC) are studied. A performance comparison between EGS-ORC and the EGS combined heating and power system(CHP) is presented. Considering the CO_(2)emission reduction benefits, the influence of carbon emission trading price on the levelized cost of energy(LCOE) is also presented. It is indicated that the geofluid mass flow rate is a critical parameter in dictating the success of a project. Under the assumed typical working conditions, the LCOE of EGS-ORC and EGS-CHP systems are 24.72 and 16.1 cents/k Wh, respectively. Compared with the EGS-ORC system, the LCOE of the EGS-CHP system is reduced by 35%. EGS-CHP systems have the potential to be economically viable in the future. With carbon emission trading prices of 12.76 USD/ton, the LCOE can be reduced by approximately 8.5%. 展开更多
关键词 enhanced geothermal system organic Rankine cycle combined heating and power system thermo-economic investigation carbon emission reduction
下载PDF
Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power 被引量:4
10
作者 Feng Zhao Chenghui Zhang Bo Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第4期385-393,共9页
This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power U+0028 CCHP U+0029 with storage systems. Initially, the initiative ... This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power U+0028 CCHP U+0029 with storage systems. Initially, the initiative optimization operation strategy of CCHP system in the cooling season, the heating season and the transition season was formulated. The energy management of CCHP system was optimized by the multi-objective optimization model with maximum daily energy efficiency, minimum daily carbon emissions and minimum daily operation cost based on the proposed initiative optimization operation strategy. Furthermore, the pareto optimal solution set was solved by using the niche particle swarm multi-objective optimization algorithm. Ultimately, the most satisfactory energy management scheme was obtained by using the technique for order preference by similarity to ideal solution U+0028 TOPSIS U+0029 method. A case study of CCHP system used in a hospital in the north of China validated the effectiveness of this method. The results showed that the satisfactory energy management scheme of CCHP system was obtained based on this initiative optimization operation strategy and multi-objective energy management method. The CCHP system has achieved better energy efficiency, environmental protection and economic benefits. © 2014 Chinese Association of Automation. 展开更多
关键词 CARBON COOLING Cooling systems Energy efficiency Energy management heating Multiobjective optimization OPTIMIZATION Pareto principle
下载PDF
Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region
11
作者 Jean-Ann James Valerie M. Thomas +2 位作者 Arka Pandit Duo Li John C. Crittenden 《Engineering》 SCIE EI 2016年第4期470-480,共11页
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po... The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings. 展开更多
关键词 Combined cooling heating and power (CCHP) Air-cooled microturbines Distributed energy generation Water for energy production Net metering
下载PDF
Study of Models for Heating Power Station Operator Training Systems
12
作者 Sholpan Muratkyzy Baimatayeva Yuriy Vladimirovitch Shevyakov 《Journal of Energy and Power Engineering》 2013年第1期162-167,共6页
This paper is devoted to development and study of models for operator training systems of heating power station processes management. It proposed a mathematical model describing the management processes of heating pow... This paper is devoted to development and study of models for operator training systems of heating power station processes management. It proposed a mathematical model describing the management processes of heating power units of the technological complex considering the relationship of technological variables in deviations effective in real time. A software complex is developed for the system of training of operators controlling processes in heating station units. Obtained results may be used in the course of development of computer training systems for operators of heating power stations with cross-linkage. 展开更多
关键词 Training systems of operators steam generator simulation model heating power stations
下载PDF
Fabrication and testing of phase change heat sink for high power LED 被引量:1
13
作者 向建化 张春良 +2 位作者 江帆 刘晓初 汤勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2066-2071,共6页
A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-gr... A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃. 展开更多
关键词 high power light emitting diode phase change heat sink enhanced boiling WICK heat transfer performance
下载PDF
Improving the performance of a thermoelectric power system using a flat-plate heat pipe 被引量:8
14
作者 Suchen Wu Yiwen Ding +1 位作者 Chengbin Zhang Dehao Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第1期44-53,共10页
A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimen... A gravitational flat-plate heat pipe is designed and fabricated in this paper to serve as a heat spreader to diffuse the local heat source to the hot side of the thermoelectric power module.Based on this, an experimental test for the thermoelectric power generation system is conducted to study the influences of the heat spreader on the temperature uniformity and power generation performance when exposing to a local heat source.In addition,the effects of the heating power, inclination angle, and local heat source size on the power generation performance of the thermoelectric power module using a flat-plate heat pipe as a heat spreader are examined and compared with that using a metal plate.The results indicate that the gravitational flat-plate heat pipe has considerable advantages over the metal plate in the temperature uniformity.The superiority of temperature uniformity in the improvement of power generation performance for the thermoelectric power system using a heat pipe is demonstrated.Particularly, the heat pipe shows good adaptability to placement mode and the local heat source size, which is beneficial to the application in the thermoelectric power generation. 展开更多
关键词 THERMOELECTRIC heat PIPE heat SPREADER power generation
下载PDF
Recent advance on the efficiency at maximum power of heat engines 被引量:9
15
作者 Tu Zhan-Chun 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期36-45,共10页
This review reports several key advances on the theoretical investigations of efficiency at maximum power of heat engines in the past five years. The analytical results of efficiency at maximum power for the Curzon-Ah... This review reports several key advances on the theoretical investigations of efficiency at maximum power of heat engines in the past five years. The analytical results of efficiency at maximum power for the Curzon-Ahlborn heat engine, the stochastic heat engine constructed from a Brownian particle, and Feynman's ratchet as a heat engine are presented. It is found that: the efficiency at maximum power exhibits universal behavior at small relative temperature differences; the lower and the upper bounds might exist under quite general conditions; and the problem of efficiency at maximum power comes down to seeking for the minimum irreversible entropy production in each finite-time isothermal process for a given time. 展开更多
关键词 effciency at maximum power heat engine UNIVERSALITY BOUNDS
下载PDF
Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling,Heating and Power System
16
作者 LIU Jiejie LI Yao +1 位作者 MENG Xianyang WU Jiangtao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期931-950,共20页
The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a mult... The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a multi-objective optimization model based on the life cycle assessment(LCA)method for the optimal design of hybrid solar and biomass system.The life-cycle process of the poly-generation system is divided into six phases to analyze energy consumption and greenhouse gas emissions.The comprehensive performances of the hybrid system are optimized by incorporating the evaluation criteria,including environmental impact in the whole life cycle,renewable energy contribution and economic benefit.The non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)with the technique for order preference by similarity to ideal solution(TOPSIS)method is employed to search the Pareto frontier result and thereby achieve optimal performance.The developed optimization methodology is used for a case study in an industrial park.The results indicate that the best performance from the optimized hybrid system is reached with the environmental impact load reduction rate(EILRR)of 46.03%,renewable energy contribution proportion(RECP)of 92.73%and annual total cost saving rate(ATCSR)of35.75%,respectively.By comparing pollutant-eq emissions of different stages,the operation phase emits the largest pollutant followed by the phase of raw material acquisition.Overall,this study reveals that the proposed multi-objective optimization model integrated with LCA method delivers an alternative path for the design and optimization of more sustainable CCHP system. 展开更多
关键词 combined cooling heating and power system solar-biomass multi-objective optimization life cycle assessment optimal design
原文传递
A Financial Approach to Evaluate an Optimized Combined Cooling, Heat and Power System 被引量:20
17
作者 Shahab Bahrami Farahbakhsh Safe 《Energy and Power Engineering》 2013年第5期352-362,共11页
Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits su... Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits such as lower electricity generation price. In Iran among all type of DGs, because of wide natural gas network infrastructure and several incentives that government legislated to support combined cooling, heat and power (CCHP) investors, this type of technology is more prevalent in comparison with other technologies. Between existing CCHP technologies, certain economic choices are to be taken into account. For different buildings with different load curves, suitable size and operation of CCHP should be calculated to make the project more feasible. If CCHP does not well suited for a position, then the whole energy efficiency would be plunged significantly. In this paper, a model to find the optimal size and operation of CCHP and auxiliary boiler for any users is proposed by considering an integrated view of electricity and natural gas network using GAMS software. Then this method is applying for a hospital in Tehran as a real case study. Finally, by applying COMFAR III software, useful financial parameters and sensitivity analysis are calculated. 展开更多
关键词 Combined COOLING heat and power (CCHP) Energy HUB Optimal SIZE FINANCIAL Analysis
下载PDF
RHEOLOGICAL CHARACTERISTICS,POWER CONSUMPTION,MASS AND HEAT,TRANSFER DURING XANTHAN GUM FERMENTATION 被引量:4
18
作者 赵学明 胡宗定 +2 位作者 A.W.Nienow C.A.Kent S.Chatwin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1994年第4期15-27,共13页
Xanthan gum fermentation is probably the most complex fermentation process in terms ofrheological property variations and associated mixing,power consumption,mass and heat transferproblems.In order to obtain these dat... Xanthan gum fermentation is probably the most complex fermentation process in terms ofrheological property variations and associated mixing,power consumption,mass and heat transferproblems.In order to obtain these data,fermentations of Xanthomonas campestris were carried outon pilot scale bioreactor with different D/T ratios and different feeding strategies(batch andfed-batch).It was discovered that the rheology of xanthan fermentation broth is of paramountimportance to the above characteristics.The aerated power consumption and power number are both afunction of aeration rate during the initial stage of the fermentation when the viscosity is low andthe Reynolds number high.However when the becames viscous and Reynolds unmber≤10~3,thegas velocity does not show any effect on the power number.The oxygen mass transfer coefficientsand the overall heat transfer coefficients are both dependent on the impeller speed,the apparentviscosity of the broth and the D/T ratio.These data taken from practical 展开更多
关键词 XANTHAN FERMENTATION RHEOLOGY power consumption MASS TRANSFER heat TRANSFER
下载PDF
In-Situ Preparation and Thermal Shock Resistance of Mullite-Cordierite Heat Tube Material for Solar Thermal Power 被引量:6
19
作者 徐晓虹 MA Xionghua +3 位作者 WU Jianfeng CHEN Ling XU Tao ZHANG Mengqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第3期407-412,共6页
In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sint... In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by pressureless sintering using a-Al203, Suzhou kaolin, talc, and feldspar as starting materials. The important parameter for solar thermal transfer tube such as water absorption (W), bulk density (Db), and the mechanical properties were investigated. The phase composition and microstructure of the composite ceramics were analyzed by XRD and SEM. The experimental results show that the B3 sintered at 1 300 ℃ and holding for 3 h has an optimum thermal shock resistance. The bending strength loss rate of B3 is only 2% at 1 100℃ by air quenching-strength test and the sample can endure 30 times thermal shock cycling, and the water absorption, the bulk density and the bending strength are 0.32%, 2.58 g·cm-3, and 125.59 MPa respectively. The XRD analysis indicated that the phase compositions of the sample were mullite, cordierite, corundum, and spinel. The SEM images illustrate that the cordierite is prismatic grain and the mullite is nano rod, showing a good thermal shock resistance for composite ceramics as potential solar thermal power material. 展开更多
关键词 solar thermal power generation heat transfer tube MULLITE-CORDIERITE composite ceramic
下载PDF
Simulation and performance analysis of organic Rankine cycle combined heat and power system
20
作者 刘玉兰 曹政 +1 位作者 陈九法 熊健 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期489-495,共7页
To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state.... To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state. In the system,R245 fa was selected as the working fluid. A scroll expander was modeled with empirical isentropic expansion efficiency.Plate heat exchangers were selected as the evaporator and the condenser, and detailed heat transfer models were programmed for both one-phase and two-phase regions. Simulations were carried out at seven different heat source temperatures( 80,90, 100, 110, 120, 130, 140 ℃) in combination with eight different heat sink temperatures( 20, 25, 30, 35, 40, 45, 50,55 ℃). Results showthat in the ORC without an internal heat exchanger( IHE), the optimum cycle efficiencies are in the range of 7. 0% to 7. 3% when the temperature differences between the heat source and heat sink are in the range of 70 to90 ℃. Simulations on CHP reveal that domestic hot water can be produced when the heat sink inlet temperature is higher than40 ℃, and the corresponding exergy efficiency and overall thermal efficiency are 29% to 56% and 87% to 90% higher than those in the non-CHP ORC, respectively. It is found that the IHE has little effect on the improvement of work output and efficiencies for the CHP ORC. 展开更多
关键词 organic Rankine cycle combined heat and power cycle efficiency exergy efficiency thermal efficiency
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部