The purpose of this study is to conduct the dryout point and heat transfer correlation for subcooled boiling flow in narrow annuli. First, the dryout point of subcooled flow boiling of water was measured in narrow ann...The purpose of this study is to conduct the dryout point and heat transfer correlation for subcooled boiling flow in narrow annuli. First, the dryout point of subcooled flow boiling of water was measured in narrow annular channels under the working condition of pressure ranging from 0.1 to 0.3 MPa and low mass flow rate from 6 to 60 kgm^-2 s^-1. Experimental test channels were annular and heated bilaterally with the channel gap of lmm and 1.5mm, and heated length of 1500mm.The location of the dryout was observed and measured by experiment with investigating the various system parameter effects on dryout point, and the results show that the location of dryout point is basically stable and repeating and the heat transfer coefficient increased with heat flux, mass flux and pressure, however, decreases with the gap size. Next, new correlations of CHF and critical vapor quality for narrow annular channels was proposed and calculation results shown a good agreement with the experimental data.展开更多
The flow boiling heat transfer characteristics of refrigerant R134 a flowing inside two different kinds of minichannels are investigated. One channel is multi-port extruded with the hydraulic diameter of 0.63 mm,and t...The flow boiling heat transfer characteristics of refrigerant R134 a flowing inside two different kinds of minichannels are investigated. One channel is multi-port extruded with the hydraulic diameter of 0.63 mm,and the other one is rectangular with offset fins and a hydraulic diameter of 1.28 mm. The experiments are performed with a mass flow rate between 68 and 630 kg/(m^2·s),a heat flux between 9 and 64 kW/m^2,and a saturation pressure between 0.24 and 0.63 MPa,under the constant heat flux heating mode. It is found that the effect of mass flow rate on boiling heat transfer is related to heat flux,and that with the increase of heat flux,the effect can only be efficient in higher vapor quality region. The effects of heat flux and saturation pressure on boiling heat transfer are related to a threshold vapor quality,and the value will gradually decrease with the increase of heat flux or saturation pressure. Based on these analyses,a new correlation is proposed to predict the boiling heat transfer coefficient of refrigerant R134 a in the mini-channels under the experimental conditions.展开更多
为研究微通道中纳米流体流动沸腾的换热性能,设计了一种水力直径为143μm的矩形硅基微通道,搭建了研究微通道中纳米流体流动沸腾换热的高速测量和光学可视化实验平台。研究了质量分数为0.2%的Al2O3纳米流体及纯水在微通道中的流动沸腾...为研究微通道中纳米流体流动沸腾的换热性能,设计了一种水力直径为143μm的矩形硅基微通道,搭建了研究微通道中纳米流体流动沸腾换热的高速测量和光学可视化实验平台。研究了质量分数为0.2%的Al2O3纳米流体及纯水在微通道中的流动沸腾换热性能。通过比较在两种换热工质中系统压降和壁温,并结合流型的同步变化分析了纳米流体的流动沸腾换热性能。结果表明:纳米粒子的加入会使微通道中流动沸腾时流型发生变化,以小气泡和泡状流为主。通道沸腾换热得到加强,壁温和系统压降波动幅度减小,出现沸腾不稳定性时的热流密度升高,系统的OFO(onset of flow oscillation)点明显后移,系统稳定沸腾区域增大。采用纳米流体做工质不仅对于微通道中流动沸腾不稳定性具有抑制作用,而且能够改善微通道中流动沸腾时的流动和换热性能。展开更多
为探讨热流密度对二相流动沸腾摩擦压降的影响,并结合可视化探究改变热流密度时产生压降不稳定现象的机理,文章以R22制冷剂为实验工质,在截面尺寸高×宽分别为2.0 mm×2.0 mm,2.0 mm×1.0 mm和2.0 mm×0.6 mm 3种不同...为探讨热流密度对二相流动沸腾摩擦压降的影响,并结合可视化探究改变热流密度时产生压降不稳定现象的机理,文章以R22制冷剂为实验工质,在截面尺寸高×宽分别为2.0 mm×2.0 mm,2.0 mm×1.0 mm和2.0 mm×0.6 mm 3种不同矩形微通道中,进行二相沸腾传热实验。实验表明:此实验条件下,R22制冷剂在微通道内进行二相沸腾传热时,二相摩擦压降是产生压降的主要因素;二相摩擦压降随热流密度的增加而增大,而且低热流密度下增幅较快,当热流密度增加到一定程度后,二相摩擦压降增加趋势变缓;在质量通量为253.2 kg/(m2·s)的条件下,热流密度从4.5 k W/m2增加到18.1 k W/m2时,流体流型经历了局部干涸再润湿的周期性变化,这种变化过程中压降波动较大。展开更多
基金This work is supported by the Project of National Natural Science Foundation of China (No. 50076014) and the Project of Major State Basic Research Program (No. G2000026303).
文摘The purpose of this study is to conduct the dryout point and heat transfer correlation for subcooled boiling flow in narrow annuli. First, the dryout point of subcooled flow boiling of water was measured in narrow annular channels under the working condition of pressure ranging from 0.1 to 0.3 MPa and low mass flow rate from 6 to 60 kgm^-2 s^-1. Experimental test channels were annular and heated bilaterally with the channel gap of lmm and 1.5mm, and heated length of 1500mm.The location of the dryout was observed and measured by experiment with investigating the various system parameter effects on dryout point, and the results show that the location of dryout point is basically stable and repeating and the heat transfer coefficient increased with heat flux, mass flux and pressure, however, decreases with the gap size. Next, new correlations of CHF and critical vapor quality for narrow annular channels was proposed and calculation results shown a good agreement with the experimental data.
文摘The flow boiling heat transfer characteristics of refrigerant R134 a flowing inside two different kinds of minichannels are investigated. One channel is multi-port extruded with the hydraulic diameter of 0.63 mm,and the other one is rectangular with offset fins and a hydraulic diameter of 1.28 mm. The experiments are performed with a mass flow rate between 68 and 630 kg/(m^2·s),a heat flux between 9 and 64 kW/m^2,and a saturation pressure between 0.24 and 0.63 MPa,under the constant heat flux heating mode. It is found that the effect of mass flow rate on boiling heat transfer is related to heat flux,and that with the increase of heat flux,the effect can only be efficient in higher vapor quality region. The effects of heat flux and saturation pressure on boiling heat transfer are related to a threshold vapor quality,and the value will gradually decrease with the increase of heat flux or saturation pressure. Based on these analyses,a new correlation is proposed to predict the boiling heat transfer coefficient of refrigerant R134 a in the mini-channels under the experimental conditions.
文摘为研究微通道中纳米流体流动沸腾的换热性能,设计了一种水力直径为143μm的矩形硅基微通道,搭建了研究微通道中纳米流体流动沸腾换热的高速测量和光学可视化实验平台。研究了质量分数为0.2%的Al2O3纳米流体及纯水在微通道中的流动沸腾换热性能。通过比较在两种换热工质中系统压降和壁温,并结合流型的同步变化分析了纳米流体的流动沸腾换热性能。结果表明:纳米粒子的加入会使微通道中流动沸腾时流型发生变化,以小气泡和泡状流为主。通道沸腾换热得到加强,壁温和系统压降波动幅度减小,出现沸腾不稳定性时的热流密度升高,系统的OFO(onset of flow oscillation)点明显后移,系统稳定沸腾区域增大。采用纳米流体做工质不仅对于微通道中流动沸腾不稳定性具有抑制作用,而且能够改善微通道中流动沸腾时的流动和换热性能。
文摘为探讨热流密度对二相流动沸腾摩擦压降的影响,并结合可视化探究改变热流密度时产生压降不稳定现象的机理,文章以R22制冷剂为实验工质,在截面尺寸高×宽分别为2.0 mm×2.0 mm,2.0 mm×1.0 mm和2.0 mm×0.6 mm 3种不同矩形微通道中,进行二相沸腾传热实验。实验表明:此实验条件下,R22制冷剂在微通道内进行二相沸腾传热时,二相摩擦压降是产生压降的主要因素;二相摩擦压降随热流密度的增加而增大,而且低热流密度下增幅较快,当热流密度增加到一定程度后,二相摩擦压降增加趋势变缓;在质量通量为253.2 kg/(m2·s)的条件下,热流密度从4.5 k W/m2增加到18.1 k W/m2时,流体流型经历了局部干涸再润湿的周期性变化,这种变化过程中压降波动较大。