Covalent organic frameworks(COFs), as an emerging class of porous crystalline materials constructed by covalent links between the building monomers, have gained tremendous attention. Over the past 15 years, COFs have ...Covalent organic frameworks(COFs), as an emerging class of porous crystalline materials constructed by covalent links between the building monomers, have gained tremendous attention. Over the past 15 years, COFs have made rapid progress and substantial development in the chemistry and materials fields. However, the synthesis of COFs has been dominated by solvothermal methods for a long time and it usually involves high temperature, high pressure and toxic organic solvents, which created many challenges for environmental considerations. Recently,the exploration of new approaches for facile fabrication of COFs has aroused extensive interest. Hence, in this review, we comprehensively describe the synthetic strategies of COFs from the aspects of nonconventional heating methods and reaction media. In addition, the advantages,limitations and properties of the preparation methods are compared. Finally, we outline the main challenges and development prospects of the synthesis of COFs in the future and propose some possible solutions.展开更多
Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting m...Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.展开更多
As a by-product of steel enterprises,steel slag has a huge output and is rich in valuable minerals,but its comprehensive utilization rate is very low.The article mainly introduces the hot splashing method,hot sealing ...As a by-product of steel enterprises,steel slag has a huge output and is rich in valuable minerals,but its comprehensive utilization rate is very low.The article mainly introduces the hot splashing method,hot sealing method,and drum method for the treatment of steel slag outside the furnace,and compares and analyzes the advantages and disadvantages of the production operation process and steel slag treatment process.At the same time,it also introduces the residual slag+double slag process and gasification dephosphorization slag circulation steelmaking technology for steel slag treatment inside the furnace,providing direction for steel enterprises to clean and comprehensively utilize steel slag.展开更多
Transitional metal alloy and compounds have been developed as the low cost and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).However,a high mass loading o...Transitional metal alloy and compounds have been developed as the low cost and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).However,a high mass loading of these catalysts is commonly needed to achieve acceptable catalytic performance,which could cause such problems as battery weight gain,mass transport blocking,and catalyst loss.We report herein the preparation of fine CoNi nanoparticles(5-6 nm)anchored inside a nitrogendoped defective carbon nanotube network(CoNi@N-DCNT)by a transient Joule heating method.When utilized as an electrocatalyst for oxygen reduction and evolution in alkaline media,the CoNi@N-DCNT film catalyst with a very low mass loading of 0.06 mg cm^(-2) showed excellent bifunctional catalytic performance.For ORR,the onset potential(Eonset)and the half-wave potential(E_(1/2))were 0.92 V versus reversible hydrogen electrode(vs.RHE)and 0.83 V(vs.RHE),respectively.For OER,the potential at the current density(J)of 10 mA cm^(-2)(E_(10))was 1.53 V,resulting in an overpotential of 300 mV much lower than that of the commercial RuO_(2) catalyst(320 mV).The potential gap between E_(1/2) and E_(10) was as small as 0.7 V.Considering the low mass loading,the mass activity at E_(10) reached at 123.2 A g^(-1),much larger than that of the RuO_(2) catalyst and literature results of transitional metal-based bifunctional catalysts.Moreover,the CoNi@N-DCNT film catalyst showed very good long-term stability during the ORR and OER test.The excellent bifunctional catalytic performance could be attributed to the synergistic effect of the bimetal alloy.展开更多
This paper investigates a microwave heating method for the determination of chemical oxygen demand (COD) in seawater. The influences of microwave-power, heating time and standard substances on the results are studied....This paper investigates a microwave heating method for the determination of chemical oxygen demand (COD) in seawater. The influences of microwave-power, heating time and standard substances on the results are studied. Using the proposed method, we analyzed the glucose standard solution, the coefficient of variation being less than 2%. Compared with the traditional electric stove heating method, the results of F-test and T-test showed that there was no significant difference between the two methods, but the microwave method had slightly higher precision and reproducibility than the electric stove method. With the microwave heating method, several seawater samples from Jiaozhou Bay and the South Yellow Sea were also analyzed. The recovery was between 97.5% and 104.3%. This new method has the advantages of shortening the heating time, improving the working efficiency and having simple operation and therefore can be used to analyze the COD in seawater.展开更多
A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon sour...A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon source with nitrogen as dilution gas, and the pyrolytic carbon started to deposit on the carbon fiber surface when the deposition temperature was reached. The morphology of pyrolytic carbon was characterized by SEM, and the surface properties of carbon fibers before and after CVD were characterized by Raman spectroscopy. The experimental results show that the electric heating method is a novel method to fabricate C/C composite materials, which can form a dense C/C composite material in a short time. The order degree and the average crystallite size of the carbon fiber surface were decreased after the experiment.展开更多
Carbon nanotubes(CNTs) were synthesized by the electric heating catalytic chemical deposition method(CCVD) using acetylene(C2H2) as the carbon source and nitrogen(N2) as carrier gas,and nickel catalyst was loa...Carbon nanotubes(CNTs) were synthesized by the electric heating catalytic chemical deposition method(CCVD) using acetylene(C2H2) as the carbon source and nitrogen(N2) as carrier gas,and nickel catalyst was loaded by electroplating.The electric heating method,as a new method,electrifies the carbon fiber directly by using its conductivity.The morphology and structure of CNTs were characterized by SEM and TEM,and the surface properties of carbon fibers before and after the growth of CNT were characterized by Raman spectroscopy.The experimental results show that the electric heating method is a new method to produce CNT,and can grow a large number of CNTs in a short time,the crystallization degree and surface average crystallite size of carbon fiber increased after the growth of CNT on it.In addition,electroplating loading catalyst can also be used as an ideal loading way,which can control the number,shape,and distribution of nickel particles by controlling the plating time.展开更多
It has been demonstrated that heat absorption method by using the inorganic material rod to cool the molten steel can significantly reduce the macrosegregation level of the large steel ingot.However,owing to the opaci...It has been demonstrated that heat absorption method by using the inorganic material rod to cool the molten steel can significantly reduce the macrosegregation level of the large steel ingot.However,owing to the opacity of the molten steel,the physical mechanism of the heat absorption method is not clear.In this work,a transparent hydraulic physical model with water and paraffin wax was built to simulate the melting and floating processes of inorganic materials in the molten steel.A mathematical simulation was also carried out to analyze the connection between the actual ingot and the physical model.Results show that it is feasible to simulate the molten steel and inorganic materials with water and paraffin wax.With the help of the physical model,the process of the melting of paraffin wax and its floating to the surface of water were clearly observed,during which the temperature of water at some characteristic positions in the mold was recorded.The visualization findings demonstrate that the melting and floating processes of paraffin wax can help to bring the heat from the center of the mold to the top surface more quickly,which reduces the superheat and significantly accelerates the cooling rate of water.The experimental results show that for the water with a certain superheat,the use of a larger mass of paraffin wax can accelerate the cooling of the water,but there is a risk of incomplete melting of the paraffin wax.A higher superheat of water will lead to a quicker melting rate for a given mass of paraffin wax,while a lower superheat leads to the incomplete melting of paraffin wax as well.展开更多
Hot spinning process has attracted significant attention because it can be used to manufacture complex parts, extend the forming limit of materials, decrease forming forces and reduce process chains. In this paper, we...Hot spinning process has attracted significant attention because it can be used to manufacture complex parts, extend the forming limit of materials, decrease forming forces and reduce process chains. In this paper, we review researches on lightweight metals spun at elevated temperatures since they are difficult to deform at room temperature. These metals include light alloys, such as titanium, magnesium and aluminum alloys, and metal composites. Then, the heating methods used in the hot spinning process and the treatment methods employed for the temperature boundary condition in finite element analyses for the process were discussed. Finally, the future development directions for the hot spinning process of lightweight but difficult-to-deform alloys were highlighted.展开更多
One of the bottlenecks of the blast furnace (BF) campaign is the life length of hearth bottom. The basic reason for the erosion of hearth bottom is its direct contact with hot metal. According to the theory of heat ...One of the bottlenecks of the blast furnace (BF) campaign is the life length of hearth bottom. The basic reason for the erosion of hearth bottom is its direct contact with hot metal. According to the theory of heat transfer, models of BF hearth bottom are built based on the actual examples using software and VC language, and the calculated results are in good agreement with the data of BF dissection after blowing out. The temperature distribution and the capability of the resistance to erosion for different structures of hearth bottom are analyzed, especially the two prevalent kinds of hearth bottom arrangements called "the method of heat transfer" for all-carbon brick bottom and "the method of heat isolation" for ceramic synthetic hearth bottom. Features of the two kinds of hearth bottoms are analyzed. Also the different ways of protecting the hearth bottom are clarified, according to some actual examples. After that, the same essence of prolonging life, and the fact that the existence of a "protective skull" with low thermal conductivity between the hot metal and brick layers is of utmost importance are shown.展开更多
A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo meth...A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo method with the heat flux method. Its accuracy and reliability was proved by comparing the computational results with exact results from classical "Zone Method".展开更多
This paper discusses the natural convection boundary layer flow of a micropo- lax nanofluid over a vertical permeable cone with variable wall temperatures. Non-similax solutions are obtained. The nonlineaxly coupled d...This paper discusses the natural convection boundary layer flow of a micropo- lax nanofluid over a vertical permeable cone with variable wall temperatures. Non-similax solutions are obtained. The nonlineaxly coupled differential equations under the boundary layer approximations governing the flow axe solved numerically using an efficient, itera- tive, tri-diagonal, implicit finite difference method. Different experimental correlations for both nanofluid effective viscosity and nanofluid thermal conductivity are considered. It is found that as the vortex-viscosity parameter increases, both the velocity profiles and the local Nusselt number decrease. Also, among all the nanoparticles considered in this investigation, Cu gives a good convection.展开更多
A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with t...A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with temperature dependent internal heat generation. The problem was solved for two main cases. In the first case, heat generation was assumed variable by fin temperature for a solid fin and in second heat generation varied with temperature for a porous fin. Results are presented for the temperature distribution for a range of values of parameters appearing in the mathematical formulation(e.g. N, εG, and G). Results reveal that DTM is very effective and convenient. Also, it is found that this method can achieve more suitable results in comparison to numerical methods.展开更多
Heat source function method is adopted in the present paper to derive elementary solutions of coupled thermo-hydro-mechanical consolidation for saturated porous media under conjunct actions of instantaneous point heat...Heat source function method is adopted in the present paper to derive elementary solutions of coupled thermo-hydro-mechanical consolidation for saturated porous media under conjunct actions of instantaneous point heat source, instantaneous point fluid source and constant volume force. By using the so-called fictitious heat source method and images method, the solutions of a semi-infinite saturated porous medium subjected to a local heat source with time-varied intensity on its free surface are developed from elementary solutions. The numerical integral methods for calculating the unsteady temperature, pore pressure and displacement fields are given. The thermomechanical response are analyzed for the case of a circular planar heat source. Besides, the thermal consolidation characteristics of a saturated porous medium subjected to a harmonic thermal loading are also given, and the fluctuation processes of the field variables located below the center of heat source are analyzed.展开更多
Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hy...Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel.展开更多
In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE metho...In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.展开更多
Populus euphratica trees are the sole natural perennial riparian woodlands native to the river oases in the lower reaches of Heihe River Basin in northwestern China.This study investigated characteristics of the stem ...Populus euphratica trees are the sole natural perennial riparian woodlands native to the river oases in the lower reaches of Heihe River Basin in northwestern China.This study investigated characteristics of the stem sap flux of Populus euphratica and its rela-tionship to environmental factors using the thermal dissipation probe(TDP) method.The results showed that(1) daily variation of sap flow of P.euphratica on clear days exhibited an obvious unimodal curve;sap flow rates in June,July,August,and September were 13.39,12.07,12.69,and 5.10 L/d,respectively;(2) the average transpiration of the Populus euphratica from June through September amounted to 1,309.84 L;(3) stem sap flow can be affected by a number of environmental factors that,in terms of the influential degree,can be arranged in the descending order of air temperature,soil moisture,relative humidity,total solar radiation,soil temperature,and wind velocity.展开更多
For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo...For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process.展开更多
This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite el...This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method.展开更多
A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry ...A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry and boundary conditions reduces the original 3D initial-boundary value problem into a two-dimensional (2D) problem. Local weak forms are derived for small polygonal sub-domains which surround nodal points distributed over the cross section. In order to simplify the treatment of the essential boundary conditions, spatial variations of the temperature and heat flux at discrete time instants are interpolated by the natural neighbor interpolation. Moreover, the using of three-node triangular finite element method (FEM) shape functions as test functions reduces the orders of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. Two numerical examples are investigated and excellent results are obtained, demonstrating the potential application of the proposed approach.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 21822407 and 22074154)Youth Innovation Promotion Association CAS (2021420)the Foundation for Sci & Tech Research Project of Gansu Province (20JR10RA045 and 20JR5RA573)。
文摘Covalent organic frameworks(COFs), as an emerging class of porous crystalline materials constructed by covalent links between the building monomers, have gained tremendous attention. Over the past 15 years, COFs have made rapid progress and substantial development in the chemistry and materials fields. However, the synthesis of COFs has been dominated by solvothermal methods for a long time and it usually involves high temperature, high pressure and toxic organic solvents, which created many challenges for environmental considerations. Recently,the exploration of new approaches for facile fabrication of COFs has aroused extensive interest. Hence, in this review, we comprehensively describe the synthetic strategies of COFs from the aspects of nonconventional heating methods and reaction media. In addition, the advantages,limitations and properties of the preparation methods are compared. Finally, we outline the main challenges and development prospects of the synthesis of COFs in the future and propose some possible solutions.
基金Key Research and Development Program of Xinjiang(2022B02001-1)National Natural Science Foundation of China(42105172,41975146).
文摘Background Water deficit is an important problem in agricultural production in arid regions.With the advent of wholly mechanized technology for cotton planting in Xinjiang,it is important to determine which planting mode could achieve high yield,fiber quality and water use efficiency(WUE).This study aimed to explore if chemical topping affected cotton yield,quality and water use in relation to row configuration and plant densities.Results Experiments were carried out in Xinjiang China,in 2020 and 2021 with two topping method,manual topping and chemical topping,two plant densities,low and high,and two row configurations,i.e.,76 cm equal rows and 10+66 cm narrow-wide rows,which were commonly applied in matching harvest machine.Chemical topping increased seed cotton yield,but did not affect cotton fiber quality comparing to traditional manual topping.Under equal row spacing,the WUE in higher density was 62.4%higher than in the lower one.However,under narrow-wide row spacing,the WUE in lower density was 53.3%higher than in higher one(farmers’practice).For machine-harvest cotton in Xinjiang,the optimal row configuration and plant density for chemical topping was narrow-wide rows with 15 plants m-2 or equal rows with 18 plants m-2.Conclusion The plant density recommended in narrow-wide rows was less than farmers’practice and the density in equal rows was moderate with local practice.Our results provide new knowledge on optimizing agronomic managements of machine-harvested cotton for both high yield and water efficient.
文摘As a by-product of steel enterprises,steel slag has a huge output and is rich in valuable minerals,but its comprehensive utilization rate is very low.The article mainly introduces the hot splashing method,hot sealing method,and drum method for the treatment of steel slag outside the furnace,and compares and analyzes the advantages and disadvantages of the production operation process and steel slag treatment process.At the same time,it also introduces the residual slag+double slag process and gasification dephosphorization slag circulation steelmaking technology for steel slag treatment inside the furnace,providing direction for steel enterprises to clean and comprehensively utilize steel slag.
基金the financial supports from the National Natural Science Foundation of China(21975281,21773293,21603264)CAS Pioneer Hundred Talents Program+2 种基金the National Key Research and Development Program of China(2016YFA0203301)Jiangsu Planned Projects for Postdoctoral Research Funds(2019K048)Suzhou Science and Technology Plan Project(SYG201926)。
文摘Transitional metal alloy and compounds have been developed as the low cost and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).However,a high mass loading of these catalysts is commonly needed to achieve acceptable catalytic performance,which could cause such problems as battery weight gain,mass transport blocking,and catalyst loss.We report herein the preparation of fine CoNi nanoparticles(5-6 nm)anchored inside a nitrogendoped defective carbon nanotube network(CoNi@N-DCNT)by a transient Joule heating method.When utilized as an electrocatalyst for oxygen reduction and evolution in alkaline media,the CoNi@N-DCNT film catalyst with a very low mass loading of 0.06 mg cm^(-2) showed excellent bifunctional catalytic performance.For ORR,the onset potential(Eonset)and the half-wave potential(E_(1/2))were 0.92 V versus reversible hydrogen electrode(vs.RHE)and 0.83 V(vs.RHE),respectively.For OER,the potential at the current density(J)of 10 mA cm^(-2)(E_(10))was 1.53 V,resulting in an overpotential of 300 mV much lower than that of the commercial RuO_(2) catalyst(320 mV).The potential gap between E_(1/2) and E_(10) was as small as 0.7 V.Considering the low mass loading,the mass activity at E_(10) reached at 123.2 A g^(-1),much larger than that of the RuO_(2) catalyst and literature results of transitional metal-based bifunctional catalysts.Moreover,the CoNi@N-DCNT film catalyst showed very good long-term stability during the ORR and OER test.The excellent bifunctional catalytic performance could be attributed to the synergistic effect of the bimetal alloy.
文摘This paper investigates a microwave heating method for the determination of chemical oxygen demand (COD) in seawater. The influences of microwave-power, heating time and standard substances on the results are studied. Using the proposed method, we analyzed the glucose standard solution, the coefficient of variation being less than 2%. Compared with the traditional electric stove heating method, the results of F-test and T-test showed that there was no significant difference between the two methods, but the microwave method had slightly higher precision and reproducibility than the electric stove method. With the microwave heating method, several seawater samples from Jiaozhou Bay and the South Yellow Sea were also analyzed. The recovery was between 97.5% and 104.3%. This new method has the advantages of shortening the heating time, improving the working efficiency and having simple operation and therefore can be used to analyze the COD in seawater.
基金Funded by the National Natural Science Foundation of China(51165006)
文摘A new method of fabricating C/C composite materials, namely electric heating CVD method, was used, which electrified the carbon fiber directly by using the conductivity of itself. Acetylene was used as the carbon source with nitrogen as dilution gas, and the pyrolytic carbon started to deposit on the carbon fiber surface when the deposition temperature was reached. The morphology of pyrolytic carbon was characterized by SEM, and the surface properties of carbon fibers before and after CVD were characterized by Raman spectroscopy. The experimental results show that the electric heating method is a novel method to fabricate C/C composite materials, which can form a dense C/C composite material in a short time. The order degree and the average crystallite size of the carbon fiber surface were decreased after the experiment.
基金Funded by the National Natural Science Foundation of China(No.51165006)the Universities in Hubei Province Outstanding Young Scientific and Technological Innovation Team(No.T201626)
文摘Carbon nanotubes(CNTs) were synthesized by the electric heating catalytic chemical deposition method(CCVD) using acetylene(C2H2) as the carbon source and nitrogen(N2) as carrier gas,and nickel catalyst was loaded by electroplating.The electric heating method,as a new method,electrifies the carbon fiber directly by using its conductivity.The morphology and structure of CNTs were characterized by SEM and TEM,and the surface properties of carbon fibers before and after the growth of CNT were characterized by Raman spectroscopy.The experimental results show that the electric heating method is a new method to produce CNT,and can grow a large number of CNTs in a short time,the crystallization degree and surface average crystallite size of carbon fiber increased after the growth of CNT on it.In addition,electroplating loading catalyst can also be used as an ideal loading way,which can control the number,shape,and distribution of nickel particles by controlling the plating time.
基金supported by Shanghai Post-doctoral Excellence Program of China(No.2021166)Shanghai Rising-Star Program(Nos.20QA1403800 and 21QC1401500)Shanghai Science and Technology Committee(No.21511103600).
文摘It has been demonstrated that heat absorption method by using the inorganic material rod to cool the molten steel can significantly reduce the macrosegregation level of the large steel ingot.However,owing to the opacity of the molten steel,the physical mechanism of the heat absorption method is not clear.In this work,a transparent hydraulic physical model with water and paraffin wax was built to simulate the melting and floating processes of inorganic materials in the molten steel.A mathematical simulation was also carried out to analyze the connection between the actual ingot and the physical model.Results show that it is feasible to simulate the molten steel and inorganic materials with water and paraffin wax.With the help of the physical model,the process of the melting of paraffin wax and its floating to the surface of water were clearly observed,during which the temperature of water at some characteristic positions in the mold was recorded.The visualization findings demonstrate that the melting and floating processes of paraffin wax can help to bring the heat from the center of the mold to the top surface more quickly,which reduces the superheat and significantly accelerates the cooling rate of water.The experimental results show that for the water with a certain superheat,the use of a larger mass of paraffin wax can accelerate the cooling of the water,but there is a risk of incomplete melting of the paraffin wax.A higher superheat of water will lead to a quicker melting rate for a given mass of paraffin wax,while a lower superheat leads to the incomplete melting of paraffin wax as well.
基金Project(51222509) supported by the National Science Fund for Excellent Young Scholars of ChinaProject(51175429) supported by the National Natural Science Foundation of ChinaProjects(97-QZ-2014,90-QP-2013) supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU) of China
文摘Hot spinning process has attracted significant attention because it can be used to manufacture complex parts, extend the forming limit of materials, decrease forming forces and reduce process chains. In this paper, we review researches on lightweight metals spun at elevated temperatures since they are difficult to deform at room temperature. These metals include light alloys, such as titanium, magnesium and aluminum alloys, and metal composites. Then, the heating methods used in the hot spinning process and the treatment methods employed for the temperature boundary condition in finite element analyses for the process were discussed. Finally, the future development directions for the hot spinning process of lightweight but difficult-to-deform alloys were highlighted.
基金Item Sponsored by National Natural Science Foundation of China (60472095)
文摘One of the bottlenecks of the blast furnace (BF) campaign is the life length of hearth bottom. The basic reason for the erosion of hearth bottom is its direct contact with hot metal. According to the theory of heat transfer, models of BF hearth bottom are built based on the actual examples using software and VC language, and the calculated results are in good agreement with the data of BF dissection after blowing out. The temperature distribution and the capability of the resistance to erosion for different structures of hearth bottom are analyzed, especially the two prevalent kinds of hearth bottom arrangements called "the method of heat transfer" for all-carbon brick bottom and "the method of heat isolation" for ceramic synthetic hearth bottom. Features of the two kinds of hearth bottoms are analyzed. Also the different ways of protecting the hearth bottom are clarified, according to some actual examples. After that, the same essence of prolonging life, and the fact that the existence of a "protective skull" with low thermal conductivity between the hot metal and brick layers is of utmost importance are shown.
基金financially supported by the National Natural Science Foundation of China (No.50464004)
文摘A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo method with the heat flux method. Its accuracy and reliability was proved by comparing the computational results with exact results from classical "Zone Method".
文摘This paper discusses the natural convection boundary layer flow of a micropo- lax nanofluid over a vertical permeable cone with variable wall temperatures. Non-similax solutions are obtained. The nonlineaxly coupled differential equations under the boundary layer approximations governing the flow axe solved numerically using an efficient, itera- tive, tri-diagonal, implicit finite difference method. Different experimental correlations for both nanofluid effective viscosity and nanofluid thermal conductivity are considered. It is found that as the vortex-viscosity parameter increases, both the velocity profiles and the local Nusselt number decrease. Also, among all the nanoparticles considered in this investigation, Cu gives a good convection.
文摘A simple and highly accurate semi-analytical method, called the differential transformation method(DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with temperature dependent internal heat generation. The problem was solved for two main cases. In the first case, heat generation was assumed variable by fin temperature for a solid fin and in second heat generation varied with temperature for a porous fin. Results are presented for the temperature distribution for a range of values of parameters appearing in the mathematical formulation(e.g. N, εG, and G). Results reveal that DTM is very effective and convenient. Also, it is found that this method can achieve more suitable results in comparison to numerical methods.
基金The project supported by the National Natural Science Foundation of China (50578008) The English text was polished by Yunming Chen
文摘Heat source function method is adopted in the present paper to derive elementary solutions of coupled thermo-hydro-mechanical consolidation for saturated porous media under conjunct actions of instantaneous point heat source, instantaneous point fluid source and constant volume force. By using the so-called fictitious heat source method and images method, the solutions of a semi-infinite saturated porous medium subjected to a local heat source with time-varied intensity on its free surface are developed from elementary solutions. The numerical integral methods for calculating the unsteady temperature, pore pressure and displacement fields are given. The thermomechanical response are analyzed for the case of a circular planar heat source. Besides, the thermal consolidation characteristics of a saturated porous medium subjected to a harmonic thermal loading are also given, and the fluctuation processes of the field variables located below the center of heat source are analyzed.
文摘Fuel cell using borohydride as the fuel has received much attention. AB5-type hydrogen storage alloy used as the anodic material instead of noble metals has been investigated. In order to restrain the generation of hydrogen and enhance the utilization of borohydride, Ti/Zr metal powders has been added into the parent LmNi4.78Mn0.22 (where Lm is La-richened mischmetal) alloy (LNM) by ball milling and heat treatment methods. It is found that the addition of Ti/Zr metal powders lowers the electrochemical catalytic activity of the electrodes, at the same time, restrains the generation of hydrogen and enhances the utilization of the fuel. All the results show that the hydrogen generation rate or the utilization of the fuel is directly relative to the electrochemical catalytic activity or the discharge capability of the electrodes. The utilization of the fuel increases with discharge current density. It is very important to find a balance between the discharge capability and the utilization of the fuel.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171208)the Special Fund for Basic Scientific Research of Central Colleges of Chang’an University, China (Grant No. CHD2011JC080)
文摘In this paper, the complex variable reproducing kernel particle (CVRKP) method and the finite element (FE) method are combined as the CVRKP-FE method to solve transient heat conduction problems. The CVRKP-FE method not only conveniently imposes the essential boundary conditions, but also exploits the advantages of the individual methods while avoiding their disadvantages, then the computational efficiency is higher. A hybrid approximation function is applied to combine the CVRKP method with the FE method, and the traditional difference method for two-point boundary value problems is selected as the time discretization scheme. The corresponding formulations of the CVRKP-FE method are presented in detail. Several selected numerical examples of the transient heat conduction problems are presented to illustrate the performance of the CVRKP-FE method.
基金funded by the State Basic Research Planning Development Engineering-project (2009CB421303-2)the National Natural Science Foundation of China (40501012)the Knowledge Innovation Program from the Chinese Academy of Sciences (KZCX2-XB2-04)
文摘Populus euphratica trees are the sole natural perennial riparian woodlands native to the river oases in the lower reaches of Heihe River Basin in northwestern China.This study investigated characteristics of the stem sap flux of Populus euphratica and its rela-tionship to environmental factors using the thermal dissipation probe(TDP) method.The results showed that(1) daily variation of sap flow of P.euphratica on clear days exhibited an obvious unimodal curve;sap flow rates in June,July,August,and September were 13.39,12.07,12.69,and 5.10 L/d,respectively;(2) the average transpiration of the Populus euphratica from June through September amounted to 1,309.84 L;(3) stem sap flow can be affected by a number of environmental factors that,in terms of the influential degree,can be arranged in the descending order of air temperature,soil moisture,relative humidity,total solar radiation,soil temperature,and wind velocity.
基金financially supported by the Program for New Century Excellent Talents in University(No.NCET-13-0229,NCET-09-0396)the National Science & Technology Key Projects of Numerical Control(No.2012ZX04010-031,2012ZX0412-011)the National High Technology Research and Development Program("863"Program)of China(No.2013031003)
文摘For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process.
文摘This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method.
基金Project supported by the National Natural Science Foundation of China(Grant No.11002054)the Foundation of Hunan Educational Committee(Grant No.12C0059).
文摘A meshless numerical model is developed for analyzing transient heat conductions in three-dimensional (3D) axisymmetric continuously nonhomogeneous functionally graded materials (FGMs). Axial symmetry of geometry and boundary conditions reduces the original 3D initial-boundary value problem into a two-dimensional (2D) problem. Local weak forms are derived for small polygonal sub-domains which surround nodal points distributed over the cross section. In order to simplify the treatment of the essential boundary conditions, spatial variations of the temperature and heat flux at discrete time instants are interpolated by the natural neighbor interpolation. Moreover, the using of three-node triangular finite element method (FEM) shape functions as test functions reduces the orders of integrands involved in domain integrals. The semi-discrete heat conduction equation is solved numerically with the traditional two-point difference technique in the time domain. Two numerical examples are investigated and excellent results are obtained, demonstrating the potential application of the proposed approach.