期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
Changes in Regional Heavy Rainfall Events in China during 1961–2012 被引量:17
1
作者 ZOU Xukai REN Fumin 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2015年第5期704-714,共11页
A new technique for identifying regional climate events, the Objective Identification Technique for Regional Extreme Events(OITREE), was applied to investigate the characteristics of regional heavy rainfall events i... A new technique for identifying regional climate events, the Objective Identification Technique for Regional Extreme Events(OITREE), was applied to investigate the characteristics of regional heavy rainfall events in China during the period1961–2012. In total, 373 regional heavy rainfall events(RHREs) were identified during the past 52 years. The East Asian summer monsoon(EASM) had an important influence on the annual variations of China's RHRE activities, with a significant relationship between the intensity of the RHREs and the intensity of the Mei-yu. Although the increase in the frequency of those RHREs was not significant, China experienced more severe and extreme regional rainfall events in the 1990 s. The middle and lower reaches of the Yangtze River and the northern part of South China were the regions in the country most susceptible to extreme precipitation events. Some stations showed significant increasing trends in the southern part of the middle and lower reaches of the Yangtze River and the northern part of South China, while parts of North China, regions between Guangxi and Guangdong, and northern Sichuan showed decreasing trends in the accumulated intensity of RHREs.The spatial distribution of the linear trends of events' accumulated intensity displayed a similar so-called "southern flooding and northern drought" pattern over eastern China in recent decades. 展开更多
关键词 China regional heavy rainfall events
下载PDF
Typical Circulation Patterns and Associated Mechanisms for Persistent Heavy Rainfall Events over Yangtze–Huaihe River Valley during 1981–2020 被引量:6
2
作者 Huijie WANG Jianhua SUN +1 位作者 Shenming FU Yuanchun ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第12期2167-2182,共16页
Persistent heavy rainfall events(PHREs)over the Yangtze–Huaihe River Valley(YHRV)during 1981–2020 are classified into three types(type-A,type-B and type-C)according to pattern correlation.The characteristics of the ... Persistent heavy rainfall events(PHREs)over the Yangtze–Huaihe River Valley(YHRV)during 1981–2020 are classified into three types(type-A,type-B and type-C)according to pattern correlation.The characteristics of the synoptic systems for the PHREs and their possible development mechanisms are investigated.The anomalous cyclonic disturbance over the southern part of the YHRV during type-A events is primarily maintained and intensified by the propagation of Rossby wave energy originating from the northeast Atlantic in the mid–upper troposphere and the northward propagation of Rossby wave packets from the western Pacific in the mid–lower troposphere.The zonal propagation of Rossby wave packets and the northward propagation of Rossby wave packets during type-B events are more coherent than those for type-A events,which induces eastward propagation of stronger anomaly centers of geopotential height from the northeast Atlantic Ocean to the YHRV and a meridional anomaly in geopotential height over the Asian continent.Type-C events have“two ridges and one trough”in the high latitudes of the Eurasian continent,but the anomalous intensity of the western Pacific subtropical high(WPSH)and the trough of the YHRV region are weaker than those for type-A and type-B events.The composite synoptic circulation of four PHREs in 2020 is basically consistent with that of the corresponding PHRE type.The location of the South Asian high(SAH)in three of the PHREs in 2020 moves eastward as in the composite of the three types,but the position of the WPSH of the four PHREs is clearly westward and northward.Two water vapor conveyor belts and two cold air conveyor belts are tracked during the four PHREs in 2020,but the water vapor path from the western Pacific is not seen,which may be caused by the westward extension of the WPSH. 展开更多
关键词 persistent heavy rainfall events Yangtze-Huaihe River Valley Rossby wave energy dispersion water vapor paths cold air paths
下载PDF
Main Energy Paths and Energy Cascade Processes of the Two Types of Persistent Heavy Rainfall Events over the Yangtze River–Huaihe River Basin 被引量:6
3
作者 Yuanchun ZHANG Jianhua SUN Shenming FU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第2期129-143,共15页
Two types of persistent heavy rainfall events (PHREs) over the Yangtze River-Huaihe River Basin were determined in a recent statistical study: type A, whose precipitation is mainly located to the south of the Yangt... Two types of persistent heavy rainfall events (PHREs) over the Yangtze River-Huaihe River Basin were determined in a recent statistical study: type A, whose precipitation is mainly located to the south of the Yangtze River; and type B, whose precipitation is mainly located to the north of the river. The present study investigated these two PHRE types using a newly derived set of energy equations to show the scale interaction and main energy paths contributing to the persistence of the precipitation. The main results were as follows. The available potential energy (APE) and kinetic energy (KE) associated with both PHRE types generally increased upward in the troposphere, with the energy of the type-A PHREs stronger than that of the type-B PHREs (except for in the middle troposphere). There were two main common and universal energy paths of the two PHRE types: (1) the baroclinic energy conversion from APE to KE was the dominant energy source for the evolution of large-scale background circulations; and (2) the downscaled energy cascade processes of KE and APE were vital for sustaining the eddy flow, which directly caused the PHREs. The significant differences between the two PHRE types mainly appeared in the lower troposphere, where the baroclinic energy conversion associated with the eddy flow in type-A PHREs was from KE to APE, which reduced the intensity of the precipitation-related eddy flow; whereas, the conversion in type-B PHREs was from APE to KE, which enhanced the eddy flow. 展开更多
关键词 persistent heavy rainfall event energy cascade process large-scale background circulation precipitation-related eddy flow
下载PDF
Impacts of the Thermal Effects of Sub-grid Orography on the Heavy Rainfall Events Along the Yangtze River Valley in 1991 被引量:7
4
作者 冯蕾 张耀存 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第5期881-892,共12页
A P - σ regional climate model using a parameterization scheme to account for the thermal effects of the sub-grid scale orography was used to simulate the three heavy rainfall events that occurred within the Yangtze ... A P - σ regional climate model using a parameterization scheme to account for the thermal effects of the sub-grid scale orography was used to simulate the three heavy rainfall events that occurred within the Yangtze River Valley during the mei-yu period of 1991. The simulation results showed that by considering the sub-grid scale topography scheme, one can significantly improve the performance of the model for simulating the rainfall distribution and intensity during these three heavy rainfall events, most especially the second and third. It was also discovered that the rainfall was mainly due to convective precipitation. The comparison between experiments, either with and without the sub-grid scale topography scheme, showed that the model using the scheme reproduced the convergence intensity and distribution at the 850 hPa level and the ascending motion and moisture convergence center located at 500 hPa over the Yangtze River valley. However, some deviations still exist in the simulation of the atmospheric moisture content, the convergence distribution and the moisture transportation route, which mainly result in lower simulated precipitation levels. Further analysis of the simulation results demonstrated that the sub-grid topography scheme modified the distribution of the surface energy budget components, especially at the south and southwest edges of the Tibetan Plateau, leading to the development and eastward propagation of the negative geopotential height difference and positive temperature-lapse rate difference at 700 hPa, which possibly led to an improved precipitation simulation over eastern China. 展开更多
关键词 sub-grid scale orographic parameterization heavy rainfall events numerical simulation
下载PDF
Correlation Analysis of Persistent Heavy Rainfall Events in the Vicinity of the Yangtze River Valley and Global Outgoing Longwave Radiation in the Preceding Month 被引量:6
5
作者 汤燕冰 赵璐 高坤 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第6期1169-1180,共12页
Based on the National Oceanic and Atmospheric Administration (NOAA) daily satellite dataset of global outgoing longwave radiation (OLR) for the period of 1974-2004 and the NCEP-NCAR reanalysis for 1971- 2004, the ... Based on the National Oceanic and Atmospheric Administration (NOAA) daily satellite dataset of global outgoing longwave radiation (OLR) for the period of 1974-2004 and the NCEP-NCAR reanalysis for 1971- 2004, the linkage between persistent heavy rainfall (PHR) events in the vicinity of the Yangtze River valley and global OLR leading up to those events (with 1- to 3O-day lag) was investigated. The results reveal that there is a significant connection between the initiation of PHR events over the study area and anomalous convective activity over the tropical Indian Ocean, maritime continent, and tropical western Pacific Ocean. During the 30-day period prior to the onset of PHR events, the major significantly anomalous convective centers have an apparent dipole structure, always with enhanced convection in the west and suppressed convection in the east. This dipole structure continuously shifts eastward with time during the 30-day lead period. The influence of the anomalous convective activity over the tropical oceans on the initiation of PHR events over the study area is achieved via an interaction between tropical and extratropical latitudes. More specifically, anomalous convective activity weakens the Walker circulation cell over the tropical Indian Ocean first. This is followed by a weakening of the Indian summer monsoon background state and the excitation and dispersion of Rossby wave activity over Eurasia. Finally, a major modulation of the large scale background circulation occurs. As a result, the condition of a phase-lock among major large scale circulation features favoring PHR events is established over the study area. 展开更多
关键词 persistent heavy rainfall events global outgoing longwave radiation the Yangtze River valley
下载PDF
The Upstream "Strong Signals" of the Water Vapor Transport over the Tibetan Plateau during a Heavy Rainfall Event in the Yangtze River Basin 被引量:4
6
作者 Yang ZHAO Xiangde XU +1 位作者 Bin CHEN Yinjun Wang 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第12期1343-1350,共8页
A heavy rainfall event that occurred over the middle and lower reaches of the Yangtze River Basin (YRB) during July 11-13 2000 is explored in this study. The potential/stream function is used to analyze the upstream... A heavy rainfall event that occurred over the middle and lower reaches of the Yangtze River Basin (YRB) during July 11-13 2000 is explored in this study. The potential/stream function is used to analyze the upstream "strong signals" of the water vapor transport in the Tibetan Plateau (TP). The studied time period covers from 2000 LST 5 July to 2000 LST 15 July (temporal resolution: 6 hours). By analyzing the three-dimensional structure of the water vapor flux, vorticity and divergence prior to and during the heavy rainfall event, the upstream "strong signals" related to this heavy rainfall event are revealed. A strong correlation exists between the heavy rainfall event in the YRB and the convective clouds over the TE The "convergence zone" of the water vapor transport is also identified, based on correlation analysis of the water vapor flux two days and one day prior to, and on the day of, the heavy rainfall. And this "convergence zone" coincides with the migration of the maximum rainfall over the YRB. This specific coupled structure actually plays a key role in generating heavy rainfall over the YRB. The eastward movement of the coupled system with a divergence]convergence center of the potential function at the upper/lower level resembles the spatiotemporal evolution of the heavy rainfall event over the YRB. These upstream "strong signals" are clearly traced in this study through analyzing the three-dimensional structure of the potential/stream function of upstream water vapor transport. 展开更多
关键词 potential/stream function strong signals Yangtze River Basin heavy rainfall event
下载PDF
Comparison of two types of persistent heavy rainfall events during sixteen warm seasons in the Sichuan Basin 被引量:3
7
作者 Yuanchun Zhang Jianhua Sun +3 位作者 Luqi Zhu Huan Tang Shuanglong Jin Xiaolin Liu 《Atmospheric and Oceanic Science Letters》 CSCD 2021年第6期48-53,共6页
Based on hourly precipitation from national surface stations,persistent heavy rainfall events(PHREs)over the Sichuan Basin(SCB)are explored during the warm season(May to September)from 2000 to 2015 to compare synoptic... Based on hourly precipitation from national surface stations,persistent heavy rainfall events(PHREs)over the Sichuan Basin(SCB)are explored during the warm season(May to September)from 2000 to 2015 to compare synoptic circulations and maintenance mechanisms between different PHRE types.There are two main types of PHREs:one is characterized by a rain belt west of 106°E over the SCB(WSB-PHREs),and the other features a rain belt east of 106°E over the SCB(ESB-PHREs).In total,there are 18 ESB-PHREs and 10 WSB-PHREs during the study period.Overall,the rain belts of WSB-PHREs are along the terrain distribution east of the Tibetan Plateau,while the precipitation intensity of ESB-PHREs is stronger.For the two types of PHREs,the shortwave trough over the SCB and the western Pacific subtropical high act as their favorable background environments,particularly for ESB-PHREs.The water vapor of WSB-PHREs is mainly transported from the South China Sea,whereas for ESB-PHREs the South China Sea and Bay of Bengal are their main moisture sources.The composite vorticity budgets of southwest vortices during their mature stage indicate that the convergence effect is a dominant factor for maintaining the two types of PHREs,and the strong vertical vorticity advection is also favorable,but the relative contribution of vertical advection is larger for WSB-PHREs. 展开更多
关键词 Southwest vortex Persistent heavy rainfall event Large-scale circulation Vorticity budget
下载PDF
A Numerical Study on Forecasting the Henan Extraordinarily Heavy Rainfall Event in August 1975 被引量:1
8
作者 蔡则怡 王作述 潘在桃 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1992年第1期53-62,共10页
This study is essentially an experiment on the control experiment in the August 1975 catastrophe which was the heaviest rainfall in China's Mainland with a maximum 24-h rainfall of 1060.3 mm, and it significantly ... This study is essentially an experiment on the control experiment in the August 1975 catastrophe which was the heaviest rainfall in China's Mainland with a maximum 24-h rainfall of 1060.3 mm, and it significantly demonstrates that the limited area model can still skillfully give reasonable results even only the conventional data are available. For such a heavy rainfall event, a grid length of 90 km is too large while 45 km seems acceptable. Under these two grid sizes, the cumulus parameterization scheme is evidently superior to the explicit scheme since it restricts instabilities such as CISK to limited extent. The high resolution scheme for the boundary treatment does not improve forecasts significantly.The experiments also revealed some interesting phenomena such as the forecast rainfall being too small while affecting synoptic system so deep as compared with observations. Another example is the severe deformation of synoptic systems both in initial conditions and forecast fields in the presence of complicated topography. Besides, the fixed boundary condition utilized in the experiments along with current domain coverage set some limitations to the model performances. 展开更多
关键词 A Numerical Study on Forecasting the Henan Extraordinarily heavy rainfall event in August 1975
下载PDF
Moist Potential Vorticity Vector for Diagnosis of Heavy Rainfall Events in Tanzania 被引量:1
9
作者 Philbert Modest Luhunga George Djolov Edmund Mutayoba 《Journal of Geoscience and Environment Protection》 2016年第9期128-145,共18页
In this paper, we modify the convective vorticity vector (CVV) defined as a cross product of absolute vorticity and gradient of equivalent potential temperature to moist potential vorticity vector (MPVV) defined as a ... In this paper, we modify the convective vorticity vector (CVV) defined as a cross product of absolute vorticity and gradient of equivalent potential temperature to moist potential vorticity vector (MPVV) defined as a cross product of absolute vorticity () and the gradient of the moist-air entropy potential temperature ().  The patterns of (MPVV) are compared with the patterns of heavy rainfall events that occurred over different regions in Tanzania on 20<sup>th</sup> to 22<sup>nd</sup> December, 2011 and on 5<sup>th</sup> to 8<sup>th</sup> May, 2015. Moreover, the article aimed at assessing the relative contributions of the magnitude, horizontal and vertical components of (MPVV) detecting on the observed patterns of rainfall events. Dynamic and thermodynamic variables: wind speed, temperature, atmospheric pressure and relative humidity from numerical output generated by the Weather Research and Forecasting (WRF) model running at Tanzania Meteorological Agency (TMA) were used to compute MPVV. It is found that MPVV provide accurate tracking of locations received heavy rainfall, suggesting its potential use as a dynamic tracer for heavy rainfall events in Tanzania.  Finally it is found that the first and second components of MPVV contribute almost equally in tracing locations received heavy rainfall events. The magnitude of MPVV described the locations received heavy rainfall events better than the components. 展开更多
关键词 Moist Potential Vorticity Vector Moist-Air Entropic Potential Temperature heavy rainfall events
下载PDF
Decadal Features of Heavy Rainfall Events in Eastern China 被引量:12
10
作者 陈活泼 孙建奇 范可 《Acta meteorologica Sinica》 SCIE 2012年第3期289-303,共15页
Based on daily precipitation data, the spatial-temporal features of heavy rainfall events (HREs) during 1960-2009 are investigated. The results indicate that the HREs experienced strong decadal variability in the pa... Based on daily precipitation data, the spatial-temporal features of heavy rainfall events (HREs) during 1960-2009 are investigated. The results indicate that the HREs experienced strong decadal variability in the past 50 years, and the decadal features varied across regions. More HRE days are observed in the 1960s, 1980s, and 1999s over Northeast China (NEC); in the 1960s, 1970s, and 1990s over North China (NC); in the early 1960s, 1980s, and 2000s over the Huaihe River basin (HR); in the 1970s 1990s over the mid-lower reaches of the Yangtze River valley (YR); and in the 1970s and 1990s over South China (SC). These decadal changes of HRE days in eastern China are closely associated with the decadal variations of water content and stratification stability of the local atmosphere. The intensity of HREs in each sub-region is also characterized by strong decadal variability. The HRE intensity and frequency co-vary on the long-term trend, and show consistent variability over NEC, NC, and YR, but inconsistent variability over SC and HR. Further analysis of the relationships between the annual rainfall and HRE frequency as well as intensity indicates that the HRE frequency is the major contributor to the total rainfall variability in eastern China, while the HRE intensity shows only relative weak contribution. 展开更多
关键词 heavy rainfall events decadal variability eastern China atmosphere water content stratifica-tion stability
原文传递
Diagnosis of a Moist Thermodynamic Advection Parameter in Heavy-Rainfall Events 被引量:12
11
作者 吴贤笃 冉令坤 楚艳丽 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2011年第4期957-972,共16页
A moist thermodynamic advection parameter, defined as an absolute value of the dot product of hori- zontal gradients of three-dimensional potential temperature advection and general potential temperature, is introduce... A moist thermodynamic advection parameter, defined as an absolute value of the dot product of hori- zontal gradients of three-dimensional potential temperature advection and general potential temperature, is introduced to diagnose frontal heavy rainfall events in the north of China. It is shown that the parameter is closely related to observed 6-h accumulative surface rainfall and simulated cloud hydrometeors. Since the parameter is capable of describing the typical vertical structural characteristics of dynamic, thermodynamic and water vapor fields above a strong precipitation region near the front surface, it may serve as a physical tracker to detect precipitable weather systems near to a front. A tendency equation of the parameter was derived in Cartesian coordinates and calculated with the simulation output data of a heavy rainfall event. Results revealed that the advection of the parameter by the three-dimensional velocity vector, the covariance of potential temperature advection by local change of the velocity vector and general potential temperature, and the interaction between potential temperature advection and the source or sink of general potential temperature, accounted for local change in the parameter. This indicated that the parameter was determined by a combination of dynamic processes and cloud microphysical processes. 展开更多
关键词 moist thermodynamic advection parameter potential temperature advection general potential temperature heavy rainfall event
下载PDF
A Study on a Heavy Rainfall Event Triggered by an Inverted Typhoon Trough in Shandong Province 被引量:11
12
作者 赵宇 崔晓鹏 王建国 《Acta meteorologica Sinica》 SCIE 2009年第4期468-484,共17页
A heavy rainfall event that occurred in Shandong Province in 26 28 August 2004 was caused mainly by Typhoon Acre and cold air activities related to a westerly trough. The event was triggered by an inverted typhoon tro... A heavy rainfall event that occurred in Shandong Province in 26 28 August 2004 was caused mainly by Typhoon Acre and cold air activities related to a westerly trough. The event was triggered by an inverted typhoon trough, which was closely associated with the intensification of the low-level southeasterly flow and the northward transport of heat and momentum in the periphery of the typhoon low. A numerical simulation of this event is performed using the nonhydrostatic mesoscale model MM5 with two-way interactive and triply-nested grids, and the structure of the inverted typhoon trough is studied. Furthermore, the formation and development mechanism of the inverted typhoon trough and a mesoscale vortex are discussed through a vorticity budget analysis. The results show that the heavy rainfall was induced by the strong convergence between the strong and weak winds within the inverted typhoon trough. Dynamic effects of the low-level jet and the diabatic heating of precipitation played an important role in the development of the inverted typhoon trough and the formation of the mesoscale vortex. The vorticity budget analysis suggests that the divergence term in the low troposphere, the horizontal advection term, and the convection term in the middle troposphere were main contributors to positive vorticity. Nonetheless, at the same pressure level, the effect of the divergence term and that of the adveetion term were opposite to each other. In the middle troposphere, the vertical transport term made a positive contribution while the tilting term made a negative contribution, and the total vorticity tendency was the net result of their counteractions. It is found that the change tendency of the relative vorticity was not uniform horizontally. A strong positive vorticity tendency occurred in the southeast of the mesoscale vortex, which is why the heavy rainfall was concentrated there. The increase of positive vorticity in the low (upper) troposphere was caused by horizontal convergence (upward transport of vorticity from the lower troposphere). Therefore, the development of the inverted typhoon trough and the formation of the mesoscale vortex were mainly attributed to the vorticity generated in the low troposphere, and also the vertical transport of vorticity from the low and middle troposphere. 展开更多
关键词 heavy rainfall event landing typhoon inverted typhoon trough vorticity budget
原文传递
Classification of Persistent Heavy Rainfall Events over South China and Associated Moisture Source Analysis 被引量:7
13
作者 LIU Ruixin SUN Jianhua +1 位作者 WEI Jie FU Shenming 《Journal of Meteorological Research》 SCIE CSCD 2016年第5期678-693,共16页
Persistent heavy rainfall events (PHREs) over South China during 1981 2014 were selected and classified by an objective method, based on the daily precipitation data at 752 stations in China. The circulation charact... Persistent heavy rainfall events (PHREs) over South China during 1981 2014 were selected and classified by an objective method, based on the daily precipitation data at 752 stations in China. The circulation characteristics, as well as the dry-cold air and moisture sources of each type of PHREs were examined. The main results are as follows. A total of 32 non-typhoon influenced PHREs in South China were identified over the study period. By correlation analysis, the PHREs are divided into three types: SC-A type, with its main rainbelt located in the coastal areas and the northeast of Guangdong Province; SC-B type, with its main rainbelt between Guangdong Province and Guangxi Region; and SC-C type, with its main rainbelt located in the north of Guangxi Region. For the SC-A events, dry-cold air flew to South China under the steering effect of troughs in the middle troposphere which originated from the Ural Mountains and West Siberia Plain; whereas, the SC-C events were not influenced by the cold air from high latitudes. There were three water vapor pathways from low-latitude areas for both the SC-A and SC-C PHREs. The tropical Indian Ocean was the main water vapor source for these two PHRE types, while the South China Sea also contributed to the SC-C PHREs. In addition, the SC-A events were also influenced by moist and cold air originating from the Yellow Sea. Generally, the SC-C PHREs belonged to a warm-sector rainfall type, whose precipitation areas were dominated by southwesterly wind, and the convergence in wind speed was the main reason for precipitation. 展开更多
关键词 persistent heavy rainfall events South China warm-sector rainfall dry-cold air moisture so- urce water vapor transport
原文传递
Assessing the Variability of Heavy Rainfall during October to December Rainfall Season in Tanzania 被引量:1
14
作者 Lovina Peter Japheth Guirong Tan +3 位作者 Ladislaus Benedict Chang’a Agnes Lawrence Kijazi Kantamla Biseke Mafuru Isack Yonah 《Atmospheric and Climate Sciences》 2021年第2期267-283,共17页
Heavy rainfall is one of the primary causes of flood during rainy season in Tanzania leading to severe socio-economic impacts. The study aimed at assessing and characterizing the variability of Heavy Rainfall Events (... Heavy rainfall is one of the primary causes of flood during rainy season in Tanzania leading to severe socio-economic impacts. The study aimed at assessing and characterizing the variability of Heavy Rainfall Events (HREs) using Empirical Orthogonal Function (EOF), Mann-Kendal (MK) trend test, Correlation and Composite analysis methods. Based on the daily-observed precipitation and reanalysis data sets for the October to December (OND) rainfall season of 35 years (1981-2015), the spatial and temporal characteristics of HREs in Tanzania are studied. The relationship between heavy rainfall (HR) and large-scale circulation anomalies including the Indian Ocean dipole (IOD) and El Ni<span style="white-space:nowrap;">?</span>o southern oscillation (ENSO) indices was assessed. The study found that, approximately 590 HREs were concentrated over northern sector and coastal belt of Tanzania. The monthly variability indicates that HREs are more pronounced in December followed by November while October being the least affected. The occurrence of HREs over the Lake Victoria, Kigoma and Tabora is largely attributed to low-level convergence of westerlies and enhanced moisture from Congo basin accompanied by a pronounced rising limb of Indian Walker circulation cell. A time-series analysis of HRE exhibits an inter-annual variation characterized by a slightly increasing trend, though the computed trends were not statistically significant at 95% confidence level. In most part of Tanzania HREs were positively correlated with both ENSO and IOD indices, underscoring the critical role of ENSO and Indian Ocean dynamic in modulating rainfall variability over the region. In general, it has been found that most of the HREs are generally triggered or amplified by large-scale circulation patterns such as ENSO and IOD. 展开更多
关键词 rainfall Variability heavy rainfall events OND Tanzania
下载PDF
Pre-summer Persistent Heavy Rain over Southern China and Its Relationship with Intra-seasonal Oscillation of Tropical Atmosphere 被引量:1
15
作者 QIU Di YAO Su-xiang XIA Yi-cong 《Journal of Tropical Meteorology》 SCIE 2022年第4期445-456,共12页
Based on daily precipitation data supplied by the Chinese meteorological administration,hourly reanalysis datasets provided by the ECMWF and daily outgoing long wave radiation supplied by the NOAA,the evolution regula... Based on daily precipitation data supplied by the Chinese meteorological administration,hourly reanalysis datasets provided by the ECMWF and daily outgoing long wave radiation supplied by the NOAA,the evolution regularity of continuous heavy precipitation over Southern China(SC)from April to June in 1979-2020 was systematically analyzed.The interaction between specific humidity and circulation field at the background-scale,the intra-seasonal-scale and the synoptic-scale,and its influence on persistent heavy precipitation over the SC during the April-June rainy season were quantitatively diagnosed and analyzed.The results are as follows.Persistent heavy rainfall events(PHREs)over the SC during the April-June rainy season occur frequently from mid-May to mid-and late-June,exhibiting significant intra-seasonal oscillation(10-30-day)features.Vertically integrated moisture flux convergence(VIMFC)can well represent the variation of the PHREs.A multiscale quantitative diagnosis of the VIMFC shows that the pre-summer PHREs over the SC are mainly affected by the background water vapor(greater than 30 days),intraseasonal circulation disturbance(10-30-day)and background circulation(greater than 30 days),and water vapor convergences are the main factor.The SC is under the control of a warm and humid background and a strong intraseasonal cyclonic circulation,with strong convergence and ascending movements and abundant water vapor conditions during the period of the PHREs.Meanwhile,the westward inter-seasonal oscillation of tropical atmosphere keeps the precipitation system over the SC for several consecutive days,eventually leading to the occurrence,development and persistence of heavy precipitation. 展开更多
关键词 April-June rainy season over Southern China persistent heavy rainfall events(PHREs) intra-seasonal oscillation multiscale diagnosis index of the boreal summer intra-seasonal oscillation(BSISO)
下载PDF
The Multiscale Factors Favorable for a Persistent Heavy Rain Event over Hainan Island in October 2010 被引量:3
16
作者 汪汇洁 孙建华 +1 位作者 赵思雄 卫捷 《Journal of Meteorological Research》 SCIE CSCD 2016年第4期496-512,共17页
A case study is presented of the multiscale characteristics that produced the record-breaking persistent heavy rainfall event(PHRE) over Hainan Island,northern South China Sea(SCS),in autumn 2010.The study documen... A case study is presented of the multiscale characteristics that produced the record-breaking persistent heavy rainfall event(PHRE) over Hainan Island,northern South China Sea(SCS),in autumn 2010.The study documents several key weather systems,from planetary scale to mesoscale,that contributed to the extreme rainfall during this event.The main findings of this study are as follows.First,the convectively active phase of the MJO was favorable for the establishment of a cyclonic circulation and the northward expansion of the Intertropical Convergence Zone(ITCZ).The active disturbances in the northward ITCZ helped direct abundant moisture from adjacent oceans towards Hainan Island continuously throughout the event,where it interacted with cold air from the midlatitudes and caused heavy rain.Second,the 8-daylong PHRE can be divided into three processes according to different synoptic systems:peripheral cloud clusters of a tropical depression-type disturbance over the central SCS in process 1;interactions between the abnormally far north ITCZ and the invading cold air in process 2;and the newly formed tropical depression near Hainan Island in process 3.In the relatively stable synoptic background of each process,meso-α and meso-β-scale cloud clusters repeatedly traveled along the same path to Hainan Island.Finally,based on these analyses,a conceptual model is proposed for this type of PHRE in autumn over the northern SCS,which demonstrates the influences of multiscale systems. 展开更多
关键词 persistent heavy rainfall event multiscale Lagrangian moisture tracing tropical depression
原文传递
Super-Parameterization in GRAPES: The Construction of SP-GRAPES and Associated Preliminary Results
17
作者 朱丰 徐国强 +1 位作者 郑晓辉 王宇虹 《Journal of Meteorological Research》 SCIE CSCD 2015年第2期272-292,共21页
Super-parameterization(SP) aims to explicitly represent deep convection within a coarse resolution global model by embedding a cloud resolving model(CRM) in each column of the mother model. For the first time, we ... Super-parameterization(SP) aims to explicitly represent deep convection within a coarse resolution global model by embedding a cloud resolving model(CRM) in each column of the mother model. For the first time, we implemented the SP in a mesoscale regional weather model, the Global/Regional Assimilation and Pr Ediction System(GRAPES). The constructed SP-GRAPES uses a two-dimensional(2D) CRM in each grid column. A control and two SP simulations are conducted for the Beijing "7.21" heavy rainfall event to evaluate improvements in GRAPES using SP. The SP-run-I is a basic SP run delivering microphysics feedback only, whereas the SP-run-II delivers both microphysical and cloud fraction feedbacks. A comparison of the runs indicates that the SP-run-I has a slightly positive impact on the precipitation forecast than the control run. However, the inclusion of cloud fraction feedback leads to an evident overall improvement, particularly in terms of cloud fraction and 24-h cumulative precipitation. Although this is only a preliminary study using SP-GRAPES, we believe that it will provide considerable guidance for follow-up studies using SP in China. 展开更多
关键词 super-parameterization GRAPES Beijing "7.21" heavy rainfall event cloud fraction precipitation forecast verification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部