Heavy Ion Fusion makes use of the Relativistic Heavy Ion Collider at Brookhaven National Lab and the Large Hadron Collider in Geneva, Switzerland for Inertial Confinement Fusion. Two Storage Rings, which may or may no...Heavy Ion Fusion makes use of the Relativistic Heavy Ion Collider at Brookhaven National Lab and the Large Hadron Collider in Geneva, Switzerland for Inertial Confinement Fusion. Two Storage Rings, which may or may not initially be needed, added to each of the Colliders increases the intensity of the Heavy Ion Beams making it comparable to the Total Energy delivered to the DT target by the National Ignition Facility at the Lawrence Livermore Lab. The basic Physics involved gives Heavy Ion Fusion an advantage over Laser Fusion because heavy ions have greater penetration power than photons. The Relativistic Heavy Ion Collider can be used as a Prototype Heavy Ion Fusion Reactor for the Large Hadron Collider.展开更多
Shrinkage cavities and large inclusions are serious internal defects of heavy steel ingot and influence the quality of subsequent forgings. In order to remove these two types of defects, a 70 t 12Cr2Mo1 heavy ingot fa...Shrinkage cavities and large inclusions are serious internal defects of heavy steel ingot and influence the quality of subsequent forgings. In order to remove these two types of defects, a 70 t 12Cr2Mo1 heavy ingot fabricated by vacuum carbon de-oxidation process was sectioned and investigated by means of structure observation and EDS analysis. To further study the forming mechanism of shrinkage and inclusion defects and find possible solutions, simulation on pouring and solidification processes was also carried out using Fluent and ProCAST software, respectively. Results show that the shrinkage defects do not appear in the middle-upper part of the ingot. The critical value of shrinkage cavity criterion is ascertained as 0.013 on the basis of sectioning investigation and simulation results, which can be used in computer simulation to predict and avoid shrinkage defects in production of 12Cr2Mo1 ingots with different weights. However, large inclusions are found at the bottom of the ingot body. The bad thermal conditions of the ingot surface and large amount of entrained slag are the main origin of the large inclusions. The simulation result of the pouring process shows that large inclusions may be eliminated by combined measures of improving the top thermal condition and controlling the height of rudimental molten steel in the ladle to above 300 mm.展开更多
High-strength pipeline steel and large diameter line pipes are often used to increase the capacity of transportation and reduce the cost associated with the construction and operation of long-distance gas pipeline pro...High-strength pipeline steel and large diameter line pipes are often used to increase the capacity of transportation and reduce the cost associated with the construction and operation of long-distance gas pipeline projects. China' s initiatives to construct long-distance natural gas pipelines has brought in new opportunities for the development of X80 line pipes. Baosteel has designed the optimum chemical composition of X80 with high niobium and low molybdenum content. In addition, a welding experimental platform and a finite element model (FEM) have supported the development of X80 UOE pipes in an efficient and economical way. The application and recent development of X80 UOE pipes were introduced in this paper. To comply with the requirements of the Second West-East Gas Pipeline Project (2^nd WEPP ), X80 pipeline steel with low carbon bainite microstructure was developed by utilizing the optimized composition and TMCP process. The matching welding material, welding procedure and UOE forming processes for 1 219mm outside diameter X80 UOE pipes were also developed. More than 340 000 t of X80 UOE pipes were produced and applied in the 2^nd WEPP. Furthermore, to meet the prospective demand for long-distance gas pipelines with an annual transportation capacity of over 40 billion m3 ,larger size X80 UOE pipes with 1 422 mm OD × 30. 8 mm WT were trial produced recently. DWTT performance, the main technical challenge for heavier wall pipes, was improved by using optimized microstructural design. The newly developed X80 pipes can be potentially used for larger transportation capacity pipelines in China.展开更多
In this paper the large deviation results for partial and random sums Sn-ESn=n∑i=1Xi-n∑i=1EXi,n≥1;S(t)-ES(t)=N(t)∑i=1Xi-E(N(t)∑i=1Xi),t≥0 are proved, where {N(t);t ≥ 0} is a counting process of non-...In this paper the large deviation results for partial and random sums Sn-ESn=n∑i=1Xi-n∑i=1EXi,n≥1;S(t)-ES(t)=N(t)∑i=1Xi-E(N(t)∑i=1Xi),t≥0 are proved, where {N(t);t ≥ 0} is a counting process of non-negative integer-valued random variables, and {Xn; n ≥ 1} are a sequence of independent non-negative random variables independent of {N(t); t ≥ 0}. These results extend and improve some known conclusions.展开更多
In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of h...In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of heavy-duty gas turbine with the liquid metal cooling(LMC) process, were studied through the method of microstructure analysis combining. The results show that the ceramic shell with medium strength(the high temperature flexural strength is 8 MPa, the flexural strength after thermal shock resistance is 12 MPa and the residual flexural strength is 20 MPa) can prevent the rupture and runout of the blade. The appropriate temperature(1,520 ℃ for upper region and 1,500 ℃ for lower region) of the heating furnace can eliminate the wide-angle grain boundary, the deviation of grain and the run-out caused by the shell crack. The holding time after pouring(3-5 min) can promote the growth of competitive grains and avoid a great deviation of columnar grains along the crystal orientation <001>, resulting in a straight and uniform grain structure. In addition, to avoid the formation of wrinkles and to ensure a smooth blade surface, the withdrawal rate should be no greater than the growth rate of grain. It is also found that the dendritic space of the blade decreases with the rise of solidification rate, and increases with the enlarging distance between the solidification position and the chill plate.展开更多
Two types of persistent heavy rainfall events (PHREs) over the Yangtze River-Huaihe River Basin were determined in a recent statistical study: type A, whose precipitation is mainly located to the south of the Yangt...Two types of persistent heavy rainfall events (PHREs) over the Yangtze River-Huaihe River Basin were determined in a recent statistical study: type A, whose precipitation is mainly located to the south of the Yangtze River; and type B, whose precipitation is mainly located to the north of the river. The present study investigated these two PHRE types using a newly derived set of energy equations to show the scale interaction and main energy paths contributing to the persistence of the precipitation. The main results were as follows. The available potential energy (APE) and kinetic energy (KE) associated with both PHRE types generally increased upward in the troposphere, with the energy of the type-A PHREs stronger than that of the type-B PHREs (except for in the middle troposphere). There were two main common and universal energy paths of the two PHRE types: (1) the baroclinic energy conversion from APE to KE was the dominant energy source for the evolution of large-scale background circulations; and (2) the downscaled energy cascade processes of KE and APE were vital for sustaining the eddy flow, which directly caused the PHREs. The significant differences between the two PHRE types mainly appeared in the lower troposphere, where the baroclinic energy conversion associated with the eddy flow in type-A PHREs was from KE to APE, which reduced the intensity of the precipitation-related eddy flow; whereas, the conversion in type-B PHREs was from APE to KE, which enhanced the eddy flow.展开更多
文摘Heavy Ion Fusion makes use of the Relativistic Heavy Ion Collider at Brookhaven National Lab and the Large Hadron Collider in Geneva, Switzerland for Inertial Confinement Fusion. Two Storage Rings, which may or may not initially be needed, added to each of the Colliders increases the intensity of the Heavy Ion Beams making it comparable to the Total Energy delivered to the DT target by the National Ignition Facility at the Lawrence Livermore Lab. The basic Physics involved gives Heavy Ion Fusion an advantage over Laser Fusion because heavy ions have greater penetration power than photons. The Relativistic Heavy Ion Collider can be used as a Prototype Heavy Ion Fusion Reactor for the Large Hadron Collider.
基金financially supported by the Program of National Technological Cooperation and Communication(Project 2010 DFR 70640)Chinese National S&T Major Project(2011ZX06004-016)
文摘Shrinkage cavities and large inclusions are serious internal defects of heavy steel ingot and influence the quality of subsequent forgings. In order to remove these two types of defects, a 70 t 12Cr2Mo1 heavy ingot fabricated by vacuum carbon de-oxidation process was sectioned and investigated by means of structure observation and EDS analysis. To further study the forming mechanism of shrinkage and inclusion defects and find possible solutions, simulation on pouring and solidification processes was also carried out using Fluent and ProCAST software, respectively. Results show that the shrinkage defects do not appear in the middle-upper part of the ingot. The critical value of shrinkage cavity criterion is ascertained as 0.013 on the basis of sectioning investigation and simulation results, which can be used in computer simulation to predict and avoid shrinkage defects in production of 12Cr2Mo1 ingots with different weights. However, large inclusions are found at the bottom of the ingot body. The bad thermal conditions of the ingot surface and large amount of entrained slag are the main origin of the large inclusions. The simulation result of the pouring process shows that large inclusions may be eliminated by combined measures of improving the top thermal condition and controlling the height of rudimental molten steel in the ladle to above 300 mm.
文摘High-strength pipeline steel and large diameter line pipes are often used to increase the capacity of transportation and reduce the cost associated with the construction and operation of long-distance gas pipeline projects. China' s initiatives to construct long-distance natural gas pipelines has brought in new opportunities for the development of X80 line pipes. Baosteel has designed the optimum chemical composition of X80 with high niobium and low molybdenum content. In addition, a welding experimental platform and a finite element model (FEM) have supported the development of X80 UOE pipes in an efficient and economical way. The application and recent development of X80 UOE pipes were introduced in this paper. To comply with the requirements of the Second West-East Gas Pipeline Project (2^nd WEPP ), X80 pipeline steel with low carbon bainite microstructure was developed by utilizing the optimized composition and TMCP process. The matching welding material, welding procedure and UOE forming processes for 1 219mm outside diameter X80 UOE pipes were also developed. More than 340 000 t of X80 UOE pipes were produced and applied in the 2^nd WEPP. Furthermore, to meet the prospective demand for long-distance gas pipelines with an annual transportation capacity of over 40 billion m3 ,larger size X80 UOE pipes with 1 422 mm OD × 30. 8 mm WT were trial produced recently. DWTT performance, the main technical challenge for heavier wall pipes, was improved by using optimized microstructural design. The newly developed X80 pipes can be potentially used for larger transportation capacity pipelines in China.
基金Supported by the Science Foundation of the Education Committee of Anhui Province(0505101).
文摘In this paper the large deviation results for partial and random sums Sn-ESn=n∑i=1Xi-n∑i=1EXi,n≥1;S(t)-ES(t)=N(t)∑i=1Xi-E(N(t)∑i=1Xi),t≥0 are proved, where {N(t);t ≥ 0} is a counting process of non-negative integer-valued random variables, and {Xn; n ≥ 1} are a sequence of independent non-negative random variables independent of {N(t); t ≥ 0}. These results extend and improve some known conclusions.
基金financially supported by the National Science and Technology Major Project of High-end CNC Machine Tools and Basic Manufacturing Equipment(No.2017ZX04014001)
文摘In this work, some important factors such as ceramic shell strength, heat preservation temperature, standing time and withdrawal rate, which influence the formability of directionally solidified large-size blades of heavy-duty gas turbine with the liquid metal cooling(LMC) process, were studied through the method of microstructure analysis combining. The results show that the ceramic shell with medium strength(the high temperature flexural strength is 8 MPa, the flexural strength after thermal shock resistance is 12 MPa and the residual flexural strength is 20 MPa) can prevent the rupture and runout of the blade. The appropriate temperature(1,520 ℃ for upper region and 1,500 ℃ for lower region) of the heating furnace can eliminate the wide-angle grain boundary, the deviation of grain and the run-out caused by the shell crack. The holding time after pouring(3-5 min) can promote the growth of competitive grains and avoid a great deviation of columnar grains along the crystal orientation <001>, resulting in a straight and uniform grain structure. In addition, to avoid the formation of wrinkles and to ensure a smooth blade surface, the withdrawal rate should be no greater than the growth rate of grain. It is also found that the dendritic space of the blade decreases with the rise of solidification rate, and increases with the enlarging distance between the solidification position and the chill plate.
基金supported by the National Key Basic Research and Development Project of China(Grant No.2012CB417201)the National Natural Science Foundation of China(Grant Nos.41375053 and 41505038)
文摘Two types of persistent heavy rainfall events (PHREs) over the Yangtze River-Huaihe River Basin were determined in a recent statistical study: type A, whose precipitation is mainly located to the south of the Yangtze River; and type B, whose precipitation is mainly located to the north of the river. The present study investigated these two PHRE types using a newly derived set of energy equations to show the scale interaction and main energy paths contributing to the persistence of the precipitation. The main results were as follows. The available potential energy (APE) and kinetic energy (KE) associated with both PHRE types generally increased upward in the troposphere, with the energy of the type-A PHREs stronger than that of the type-B PHREs (except for in the middle troposphere). There were two main common and universal energy paths of the two PHRE types: (1) the baroclinic energy conversion from APE to KE was the dominant energy source for the evolution of large-scale background circulations; and (2) the downscaled energy cascade processes of KE and APE were vital for sustaining the eddy flow, which directly caused the PHREs. The significant differences between the two PHRE types mainly appeared in the lower troposphere, where the baroclinic energy conversion associated with the eddy flow in type-A PHREs was from KE to APE, which reduced the intensity of the precipitation-related eddy flow; whereas, the conversion in type-B PHREs was from APE to KE, which enhanced the eddy flow.