The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Mea...The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries.展开更多
The industrial manufacture processes of three kinds of roll core used ductile irons have been investigated via systematical experiments. EfFects of the ratio of C/Si, pig iron, nodularizer and alloying method on the m...The industrial manufacture processes of three kinds of roll core used ductile irons have been investigated via systematical experiments. EfFects of the ratio of C/Si, pig iron, nodularizer and alloying method on the microstructure and mechanical properties of the heavy section ductile iron have been analyzed. It has been found that when treated with RE-Mg plus Sb, high quality nodular castings can be produced even if much anti spheroidizing alloy elements are included in the pig iron. The alloy element Sb played an important role in the control of graphite morphology.展开更多
文摘The effects of alloying elements on the as-cast microstructures and mechanical properties of heavy section ductile cast iron were investigated to develop press die material having high strength and high ductility. Measurements of ultimate tensile strength, 0.2% proof strength, elongation and unnotched Charpy impact energy are presented as a function of alloy amounts within 0.25 to 0.75 wt pct range. Hardness is measured on the broken tensile specimens. The small additions of Mo, Cu, Ni and Cr changed the as-cast mechanical properties owing to the different as-cast matrix microstructures. The ferrite matrix of Mo and Ni alloyed cast iron exhibits low strength and hardness as well as high elongation and impact energy. The increase in Mo and Ni contents developed some fractions of pearlite structures near the austenite eutectic cell boundaries, which caused the elongation and impact energy to drop in a small range. Adding Cu and Cr elements rapidly changed the ferrite matrix into pearlite matrix, so strength and hardness were significantly increased. As more Mo and Cr were added, the size and fraction of primary carbides in the eutectic cell boundaries increased through the segregation of these elements into the intercellular boundaries.
文摘The industrial manufacture processes of three kinds of roll core used ductile irons have been investigated via systematical experiments. EfFects of the ratio of C/Si, pig iron, nodularizer and alloying method on the microstructure and mechanical properties of the heavy section ductile iron have been analyzed. It has been found that when treated with RE-Mg plus Sb, high quality nodular castings can be produced even if much anti spheroidizing alloy elements are included in the pig iron. The alloy element Sb played an important role in the control of graphite morphology.