期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Fuel Economy Study in Heavy Duty Diesel Engine Lubricants 被引量:1
1
作者 Hiroshi Watanabe Wim van Dam +1 位作者 Gary Parsons Peter Kleijwegt 《润滑油》 CAS 2011年第4期12-19,共8页
Internal combustion engines′ fuel economy is an important role for engine designers,engine manufacturers over the past 30 years,especially passenger car motor oils.In heavy duty diesel engine,over the past 20 years,f... Internal combustion engines′ fuel economy is an important role for engine designers,engine manufacturers over the past 30 years,especially passenger car motor oils.In heavy duty diesel engine,over the past 20 years,fuel economy has in some cases been sacrificed for exhaust gas emission optimizations.Now,Heavy Duty Automotive and the related industries have strong interest in fuel economy and the lubricants.It is driven by competitive market forces as well as government mandates and new emission regulations.Japan was the first country in the world to establish and implement heavy duty trucks and buses fuel economy standards.Other countries also have followed either by establishing direct fuel economy standards or greenhouse gas(GHG) emissions standards which are directly tied to fuel economy.This paper is discussing that heavy duty diesel engine lubricants can contribute on fuel economy.The contribution of various aspects of engine oil formulations on fuel economy will be discussed such as lubricant viscosity grade,lubricant additives and friction modifiers.In this paper,the evaluation discussions are based on fuel economy measurements in some bench tests,standardized laboratory engine tests and field tests. 展开更多
关键词 diesel fuel economy friction modifier VISCOSITY friction coefficient heavy duty diesel engine greenhouse gas(GHG) lubricant additive
下载PDF
Overall efficiency optimization of controllable mechanical turbo-compounding system for heavy duty diesel engines 被引量:3
2
作者 HE GuanZhang XIE Hui HE ShiJie 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第1期36-50,共15页
A controllable mechanical turbo-compounding(CMTC) system including continuously variable transmission(CVT) and power turbine bypass valve is proposed to recover waste heat from engine exhaust. The combined matching pr... A controllable mechanical turbo-compounding(CMTC) system including continuously variable transmission(CVT) and power turbine bypass valve is proposed to recover waste heat from engine exhaust. The combined matching principle considering swallowing capacity of both charging turbine and power turbine, main gear ratio is investigated at first based on the analysis of individual influence. Then the effects and strategies of CVT and power turbine bypass valve are studied for better performance under off-design conditions. At last, the transient response of intake pressure of engine with CMTC system is researched and the fuel saving potential is tested under driving cycle conditions. The results indicate that the overall fuel efficiency elevates at the off-design conditions if CVT is adopted due to the improvement of power turbine operating efficiency by speed modulation. The diversion of exhaust through power turbine bypass valve under the low load condition is necessary. The back pressure of the charging turbine infuences the transient response of intake pressure for a fixed CMTC configuration. A method featured by the assistance of power turbine bypass valve is tested to improve the transient response of the intake pressure. The fuel consumption reduces by 2% and 3.4% under highway fuel economy test(HWFET) and Tianjin 503(TJ503) driving cycles respectively. 展开更多
关键词 heavy duty diesel engine waste heat recovery controllable mechanical turbo-compounding continuously variabletransmission device driving cycle transient response
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部