期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Necessity and feasibility of improving the residual resistance factor of polymer flooding in heavy oil reservoirs 被引量:16
1
作者 Shi Leiting Ye Zhongbin Zhang Zhuo Zhou Changjiang Zhu Shanshan Guo Zhidong 《Petroleum Science》 SCIE CAS CSCD 2010年第2期251-256,共6页
The efficiency of water flooding in heavy oil reservoirs would be improved by increasing the viscosity of the displacing phase, but the sweep efficiency is not of significance due to the low mobility of the vicious oi... The efficiency of water flooding in heavy oil reservoirs would be improved by increasing the viscosity of the displacing phase, but the sweep efficiency is not of significance due to the low mobility of the vicious oil. On the basis of mobility control theory, increasing the residual resistance factor not only reduces the water-oil mobility ratio but also decreases the requirement for viscosity enhancement of the polymer solution. The residual resistance factor caused by hydrophobic associating polymer solution is higher than that caused by polyacrylamide solution in brine containing high concentrations of calcium and magnesium ions. The results of numerical simulations show that the polymer flooding efficiency improved by increasing the residual resistance factor is far better than that by only increasing solution viscosity. The recovery factor of heavy oil reservoirs (70 mPa·s) can be enhanced by hydrophobic associating polymer solution of high residual resistance factor (more than 3) and high effective viscosity (24 mPa·s). Therefore, increasing the residual resistance factor of the polymer solution not only decreases the requirement for the viscosity of polymer solution injected into heavy oil reservoirs but also is favorable to enhanced oil recovery during polymer flooding. 展开更多
关键词 heavy oil reservoir polymer flooding mobility control residual resistance factor VISCOSITY
下载PDF
Research into polymer injection timing for Bohai heavy oil reservoirs 被引量:3
2
作者 Lei-Ting Shi Shi-Jie Zhu +4 位作者 Jian Zhang Song-Xia Wang Xin-Sheng Xue Wei Zhou Zhong-Bin Ye 《Petroleum Science》 SCIE CAS CSCD 2015年第1期129-134,共6页
Polymer flooding has been proven to effectively improve oil recovery in the Bohai Oil Field. However, due to high oil viscosity and significant formation heterogeneity, it is necessary to further improve the displacem... Polymer flooding has been proven to effectively improve oil recovery in the Bohai Oil Field. However, due to high oil viscosity and significant formation heterogeneity, it is necessary to further improve the displacement effectiveness of polymer flooding in heavy oil reservoirs in the service life of offshore platforms. In this paper, the effects of the water/oil mobility ratio in heavy oil reservoirs and the dimensionless oil productivity index on polymer flooding effectiveness were studied utilizing rel- ative permeability curves. The results showed that when the water saturation was less than the value, where the water/oil mobility ratio was equal to 1, polymer flooding could effectively control the increase of fractional water flow, which meant that the upper limit of water/oil ratio suitable for polymer flooding should be the value when the water/oil mobility ratio was equal to 1. Mean while, by injecting a certain volume of water to create water channels in the reservoir, the polymer flooding would be the most effective in improving sweep efficiency, and lower the fractional flow of water to the value corresponding to △Jmax. Considering the service life of the platform and the polymer mobility control capacity, the best polymer injection timing for heavy oil reservoirs was optimized. It has been tested for reservoirs with crude oil viscosity of 123 and 70 mPa s, the optimum polymer flooding effec- tiveness could be obtained when the polymer floods were initiated at the time when the fractional flow of water were 10 % and 25 %, respectively. The injection timing range for polymer flooding was also theoretically analyzed for the Bohai Oil Field utilizing which provided methods for effectiveness. relative permeability curves, improving polymer flooding 展开更多
关键词 heavy oil reservoir Mobility ratio Polymer injection timing Injection timing range Timing optimization
下载PDF
Discussion on the sweep efficiency of hybrid steam-chemical process in heavy oil reservoirs: An experimental study 被引量:1
3
作者 Xiao-Hu Dong Xiu-Chao Jiang +5 位作者 Wei Zheng Hui-Qing Liu Ren-Jie Liu Wu-Chao Wang De-Shang Zeng Tai-Chao Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第6期2905-2921,共17页
Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and ... Non-condensable gas(NCG),foam and surfactant are the three commonly-used additives in hybrid steam-chemical processes for heavy oil reservoirs.Their application can effectively control the steam injection profile and increase the sweep efficiency.In this paper,the methods of microscale visualized experiment and macroscale 3D experiment are applied to systematically evaluate the areal and vertical sweep efficiencies of different hybrid steam-chemical processes.First,a series of static tests are performed to evaluate the effect of different additives on heavy oil properties.Then,by a series of tests on the microscale visualized model,the areal sweep efficiencies of a baseline steam flooding process and different follow-up hybrid EOR processes are obtained from the collected 2D images.Specifically,they include the hybrid steam-N_(2)process,hybrid steam-N2/foam process,hybrid steam-surfactant process and hybrid steam-N2/foam/surfactant process(N2/foam slug first and steam-surfactant co-injection then).From the results of static tests and visualized micromodels,the pore scale EOR mechanisms and the difference between them can be discussed.For the vertical sweep efficiencies,a macroscale 3D experiment of steam flooding process and a follow-up hybrid EOR process is conducted.Thereafter,combing the macroscale 3D experiment and laboratory-scaled numerical simulation,the vertical and overall sweep efficiencies of different hybrid steam-chemical processes are evaluated.Results indicate that compared with a steam flooding process,the areal sweep efficiency of a hybrid steam-N2process is lower.It is caused by the high mobility ratio in a steam-N2-heavy oil system.By contrast,the enhancement of sweep efficiency by a hybrid steam-N2/foam/surfactant process is the highest.It is because of the high resistance capacity of NCG foam system and the performance of surfactant.Specifically,a surfactant can interact with the oil film in chief zone and reduce the interfacial energy,and thus the oil droplets/films formed during steam injection stage are unlocked.For NCG foam,it can plug the chief steam flow zone and thus the subsequent injected steam is re-directed.Simultaneously,from the collected 2D images,it is also observed that the reservoir microscopic heterogeneity can have an important effect on their sweep efficiencies.From the 3D experiment and laboratory-scaled numerical simulation,it is found that a N2/foam slug can increase the thermal front angle by about 150 and increase the vertical sweep efficiency by about 26%.Among the four processes,a multiple hybrid EOR process(steam-N2/foam/surfactant process) is recommended than the other ones.This paper provides a novel method to systematically evaluate the sweep efficiency of hybrid steam-chemical process and some new insights on the mechanisms of sweep efficiency enhancement are also addressed.It can benefit the expansion of hybrid steam-chemical processes in the post steamed heavy oil reservoirs. 展开更多
关键词 heavy oil reservoirs Visualized model Scaled 3D model Sweep efficiency Hybrid EOR process Multicomponent and multiphase fluids
下载PDF
Study on Remaining Oil at High Water Cut Stage of the Offshore Strong Bottom Water Reservoir
4
作者 Jie Tan Zhang Zhang +2 位作者 Tingli Li Jingmin Guo Mo Zhang 《Journal of Geoscience and Environment Protection》 2023年第6期76-82,共7页
C oilfield is a heavy oil field developed by horizontal wells and single sand body in Bohai oilfield. The edge and bottom water of the reservoir is active and the natural energy development mode is adopted. The compre... C oilfield is a heavy oil field developed by horizontal wells and single sand body in Bohai oilfield. The edge and bottom water of the reservoir is active and the natural energy development mode is adopted. The comprehensive water cut of the oilfield was 95.3%, which had entered the stage of high water cut oil production. Some reservoirs were limited by crude oil viscosity and oil column height. Under the condition of existing development well pattern, some reserves were not produced or the degree of production was low, and the degree of well control was not high, so there is room for tapping the potential of remaining oil. This paper studied the rising law of water ridge of horizontal wells in bottom water reservoir by reservoir engineering method, and guided the infilling limit of horizontal wells in bottom water reservoir. At the same time, combined with the research results of fine reservoir description, the geological model was established, the numerical simulation was carried out, and the distribution law of remaining oil was analyzed. Through this study, we could understand the law of water flooding and remaining oil in the high water cut period of bottom water heavy oil reservoir, so as to provide guidance for the development strategy of this type of reservoir in the high water cut period. 展开更多
关键词 Bohai oilfield heavy oil reservoir Flooding Law Remaining oil
下载PDF
Modeling of a long sand-pack for heavy crude oil through depletion tests utilizing methane gas
5
作者 Bashir Busahmin Rama Rao Karri +1 位作者 Stephen Tyson Morteza Jami 《Petroleum》 CSCD 2021年第2期188-198,共11页
With the enormous increase in the demand for crude oil,and decrease in the resources of conventional oil reservoirs,there is a great need to understand heavy or foamy oil-gas drive mechanism to maximize the oil and ga... With the enormous increase in the demand for crude oil,and decrease in the resources of conventional oil reservoirs,there is a great need to understand heavy or foamy oil-gas drive mechanism to maximize the oil and gas production.To analyze the real movement of non-viscous heavy oil flow,the characteristic features of the oil-gas mixture has to be estimated to forecast the future potential supply from a heavy oil reservoir.An important question in heavy oil flow under solution gas drive is whether the behaviour of depletion tests can be simulated to model the heavy oil flow behaviour.The main objective of this research is to develop a reliable numerical model for modelling heavy oil flow calibrated with controlled solution gas drive experiments,and that makes a novelty in this manuscript.In this paper,CMG-STARS model which is capable of simulating solution gas drive tests that matched the research experiments.This heavy oil recovery model can determine the relative permeability curves for oil and gas in the dualphase system using Corey’s relations.At a depletion rate of 0.0418 psi/min,the maximum cumulative oil and gas production was observed to be 13,000 cm^(3)and 8500 cm^(3),respectively.The results from the bottom hole pressure and the block pressure simulation runs indicate that the fluid properties such as surface tension plays a significant role in the gas bubble formation.These results are promising,and helps to understand the complex behaviour of heavy oil reservoirs and thus can improve heavy oil recovery. 展开更多
关键词 Depletion rate Simulation Gas fluid dual-phase Sand-pack heavy oil reservoir Methane gas
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部