期刊文献+
共找到2,476篇文章
< 1 2 124 >
每页显示 20 50 100
Analysis of A Heavy Snow Process in Liaoning Province in 2009 被引量:1
1
作者 张炳川 吴晓峰 +1 位作者 贾旭轩 陆井龙 《Meteorological and Environmental Research》 CAS 2010年第3期107-111,共5页
Based on the conventional meteorological data and 4 times daily NCEP reanalysis data,the causes of rain changing snowstorm in Liaoning during February 12-13 of 2009 were discussed.The low-level jet conditions,temperat... Based on the conventional meteorological data and 4 times daily NCEP reanalysis data,the causes of rain changing snowstorm in Liaoning during February 12-13 of 2009 were discussed.The low-level jet conditions,temperature conditions and coupling mechanism of water vapor and dynamics of heavy snow were diagnosed and analyzed.The low-level jet provided abundant water vapor for this process.The convergence at low level,divergence in the upper troposphere and strong ascend movement provided dynamic conditions for the snowstorm.The wedging of cold air was the chief cause of rain changing snow.The strongprecipitation area corresponded to the moist potential vorticity well. 展开更多
关键词 rain changing snow Temperature advection Moist potential vorticity China
下载PDF
Analysis on A Heavy Rain to Rainstorm Weather Process in Liaoning Province 被引量:2
2
作者 李东 许宁 韩蓓蓓 《Meteorological and Environmental Research》 CAS 2010年第9期25-28,共4页
By using the synoptic chart,the physical quantity field,the satellite cloud image and the meteorological elements in the single station,a typical heavy rain to rainstorm weather process which occurred in Liaoning duri... By using the synoptic chart,the physical quantity field,the satellite cloud image and the meteorological elements in the single station,a typical heavy rain to rainstorm weather process which occurred in Liaoning during August 18-20 in 2009 was comprehensively analyzed.The results showed that this process was a weather process which was affected by the upper trough and the subtropical high.Baikal Lake split cold air and Hetao cold air shifted eastward and formed the vortex.The subtropical high extended westward,lifted northward,and the warm wet airflow in the edge cut in.The low-altitude jet stream accelerated the transportation of water vapor,and several active meso-scale convective cloud clusters which appeared in 588 line periphery in the right side of high-altitude jet stream outlet gradually merged with the westerlies system.It caused that the strong mixed precipitation process occurred. 展开更多
关键词 heavy rain to rainstorm Physical quantity field Satellite cloud image Meteorological elements China
下载PDF
Analysis of Simulated Heavy Rain over the Yangtze River Valley During 11-30 June 1998 Using RIEMS 被引量:26
3
作者 熊喆 王淑瑜 +1 位作者 曾昭美 符淙斌 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第5期815-824,共10页
RIEMS' ability to simulate extreme monsoon rainfall is examined using the 18-month (April 1997 September 1998) integrated results. Model-simulated heavy precipitation over the Yangtze River valley during 11-30 Jun... RIEMS' ability to simulate extreme monsoon rainfall is examined using the 18-month (April 1997 September 1998) integrated results. Model-simulated heavy precipitation over the Yangtze River valley during 11-30 June 1998 is compared with the observation, and the relationships between this heavy rainfall process and the large-scale circulations, such as the westerly jet, low-level jet, and water vapor transport, are analyzed to further understand the mechanisms for simulating heavy monsoon rainfall. The analysis results show that (1) RIEMS can reproduce the pattern of heavy precipitation over the Yangtze River valley during 11-30 June 1998, but it is shifted northwestwards. (2) The simulated West Pacific Subtropical High (WPSH) that controls the East Asia Monsoon evolution is stronger than the observation and is extended westwards, which possibly leads to the north westward shift of the heavy rain belt. (3) The Westerly jet at 200 hPa and the Low-level jet at 850 hPa, both of which are related to the heavy monsoon rainfall, are reasonably reproduced by RIEMS during 11-30 June 1998, although the intensities of the simulated Westerly/Low-level jets are strong and the location of the Westerly jet leans to the southeast, which may be the causes of RIEMS producing too much heavy rainfall in the north of the Yangtze River valley. 展开更多
关键词 RIEMS heavy rain low-level jet westerly jet
下载PDF
Kinematic Structure of a Heavy Rain Event from Dual-Doppler Radar Observations 被引量:14
4
作者 邵爱梅 邱崇践 刘黎平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2004年第4期609-616,共8页
The detailed kinematic structure of a heavy rain event that occurred in the middle reaches of the Yangtze River was investigated using dual-Doppler radar observation. A variational analysis method was developed to obt... The detailed kinematic structure of a heavy rain event that occurred in the middle reaches of the Yangtze River was investigated using dual-Doppler radar observation. A variational analysis method was developed to obtain the three-dimensional wind fields. Before the analysis, a data preprocessing procedure was carried out, in which the temporal variation with the scanning time interval and the effect of the earth curvature on the data position were taken into account. The analysis shows that a shear line in the lower and middle levels played an important role in the rainfall event. The precipitation fell mainly on the south end of the shear line where southerly flow prevailed and convergence and updraft were obvious. With the movement and decay of the shear line, the precipitation moved and decayed correspondingly. 展开更多
关键词 heavy rain mesoscale structure dual-Doppler variational method
下载PDF
The Influences of Boundary Layer Parameterization Schemes on Mesoscale Heavy Rain System 被引量:17
5
作者 许丽人 赵鸣 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2000年第3期458-465,467-472,共14页
The mesoscale numerical weather prediction model (MM4) in which the computations of the turbulent exchange coefficient in the boundary layer and surface fluxes are improved, is used to study the influences of boundary... The mesoscale numerical weather prediction model (MM4) in which the computations of the turbulent exchange coefficient in the boundary layer and surface fluxes are improved, is used to study the influences of boundary layer parameterization schemes on the predictive results of the mesoscale model. Seven different experiment schemes (including the original MM4 model) designed in this paper are tested by the observational data of several heavy rain cases so as to find an improved boundary layer parameterization scheme in the mesoscale meteorological model. The results show that all the seven different boundary layer parameterization schemes have some influences on the forecasts of precipitation intensity, distribution of rain area, vertical velocity, vorticity and divergence fields, and the improved schemes in this paper can improve the precipitation forecast. Key words Boundary layer parameterization - Mesoscale numerical weather prediction (MNWP) - Turbulent exchange coefficient - Surface fluxes - Heavy rain This paper was supported by the National Natural Science Foundation of China (Grant No. 49875005 and No. 49735180). 展开更多
关键词 Boundary layer parameterization Mesoscale numerical weather prediction (MNWP) Turbulent exchange coefficient Surface fluxes heavy rain
下载PDF
Study on Moist Potential Vorticity and Symmetric Instabilityduring a Heavy Rain Event Occurred inthe Jiang-Huai Valleys 被引量:15
6
作者 寿绍文 李耀辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1999年第2期314-321,共8页
In the light of the theory on moist potential vorticity (MPV) investigation was undertaken of the 700 hPa vertical (horizontal) component MP1 (MPV2) for the heavy rain event occurring in July 5–6, 1991. Results show ... In the light of the theory on moist potential vorticity (MPV) investigation was undertaken of the 700 hPa vertical (horizontal) component MP1 (MPV2) for the heavy rain event occurring in July 5–6, 1991. Results show that the distribution features of the two components were closely related to the development of a mesoscale cyclone as a rainstorm-causing weather system in the lower troposphere in such a way that the ambient atmosphere of which MPV1 > 0 and MPV2 < 0 with |MPV1| ≥ |MPV2| favored the genesis of conditional symmetric instability (CSI) and that, as indicated by calculations, a CSI sector was really existent in the lower troposphere during the heavy rain happening and contributed greatly to its development. 展开更多
关键词 heavy rain Moist potential vorticity (MPV) Conditional symmetric instability
下载PDF
A Study on Water Vapor Transport and Budget of Heavy Rain in Northeast China 被引量:7
7
作者 孙力 沈柏竹 隋波 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2010年第6期1399-1414,共16页
The characteristics of moisture transport and budget of widespread heavy rain and local heavy rain events in Northeast China are studied using the NCEP-NCAR reanalysis 6-hourly and daily data and daily precipitation d... The characteristics of moisture transport and budget of widespread heavy rain and local heavy rain events in Northeast China are studied using the NCEP-NCAR reanalysis 6-hourly and daily data and daily precipitation data of 200 stations in Northeast China from 1961-2005. The results demonstrate that during periods with widespread heavy rain in Northeast China, the Asian monsoon is very active and the monsoonal northward moisture transport is strengthened significantly. The widespread heavy rainfall obtains enhanced water vapor supply from large regions where the water vapor mainly originates from the Asian monsoon areas, which include the East Asian subtropical monsoon area, the South China Sea, and the southeast and southwest tropical monsoon regions. There are several branches of monsoonal moisture current converging on East China and its coastal areas, where they are strengthened and then continue northward into Northeast China. Thus, the enhanced northward monsoonal moisture transport is the key to the widespread heavy rain in Northeast China. In contrast, local heavy rainfall in Northeast China derives water vapor from limited areas, transported by the westerlies. Local evaporation also plays an important role in the water vapor supply and local recycling process of moisture. In short, the widespread heavy rains of Northeast China are mainly caused by water vapor advection brought by the Asian monsoon, whereas local heavy rainfall is mainly caused by the convergence of the westerly wind field. 展开更多
关键词 heavy rain Northeast China moisture transport moisture budget Asian monsoon
下载PDF
Relationship Between Persistent Heavy Rain Events in the Huaihe River Valley and the Distribution Pattern of Convective Activities in the Tropical Western Pacific Warm Pool 被引量:9
8
作者 鲍名 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第2期329-338,共10页
Using daily outgoing long-wave radiation (OLR) data from the National Oceanic and Atmospheric Administration (NOAA) and the National Center for Environmental Prediction/National Center for Atmospheric Research (N... Using daily outgoing long-wave radiation (OLR) data from the National Oceanic and Atmospheric Administration (NOAA) and the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data of geopotential height fields for 1979-2006, the relationship between persistent heavy rain events (PHREs) in the Huaihe River valley (HRV) and the distribution pattern of convective activity in the tropical western Pacific warm pool (WPWP) is investigated. Based on nine cases of PHREs in the HRV, common characteristics of the West Pacific subtropical high (WPSH) show that the northern edge of the WPSH continues to lie in the HRV and is associated with the persistent "north weak south strong" distribution pattern of convective activities in the WPWP. Composite analysis of OLR leading the circulation indicates that the response of the WPSH to OLR anomaly patterns lags by about 1-2 days. In order to explain the reason for the effects of the distribution pattern of convective activities in the WPWP on the persistent northern edge of the WPSH in the HRV, four typical persistent heavy and light rain events in the Yangtze River valley (YRV) are contrasted with the PHREs in the HRV. The comparison indicates that when the distribution pattern of the convective activities anomaly behaves in a weak (strong) manner across the whole WPWP, persistent heavy (light) rain tends to occur in the YRV. When the distribution pattern of the convective activities anomaly behaves according to the "north weak south strong" pattern in the WPWP, persistent heavy rain tends to occur in the HRV. The effects of the "north weak south strong" distribution pattern of convective activities on PHREs in the HRV are not obvious over the seasonal mean timescale, perhaps due to the non-extreme status of convective activities in the WPWP. 展开更多
关键词 Huaihe River valley persistent heavy rain events convective activities in the WPWP WestPacific subtropical high
下载PDF
A Spatial Cluster Analysis of Heavy Rains in China 被引量:14
9
作者 TU Kai YAN Zhong-Wei WANG Yi 《Atmospheric and Oceanic Science Letters》 2011年第1期36-40,共5页
Clustered heavy rains (CHRs) defined using hierarchical cluster analysis based on daily observations of precipitation in China during 1960-2008 are investi- gated in this paper. The geographical pattern of CHRs in C... Clustered heavy rains (CHRs) defined using hierarchical cluster analysis based on daily observations of precipitation in China during 1960-2008 are investi- gated in this paper. The geographical pattern of CHRs in China shows three high-frequency centers--South China, the Yangtze River basin, and part of North China around the Bohai Sea. CHRs occur most frequently in South China with a mean annual frequency of 6.8 (a total of 334 times during 1960-2008). June has the highest monthly frequency (2.2 times/month with a total of 108 times dur- ing 1960-2008), partly in association with the Meiyu phenomenon in the Yangtze River basin. Within the past 50 years, the frequency of CHRs in China has increased significantly from 13.5 to 17.3 times per year, which is approximately 28%. In the 1990s, the frequency of CHRs often reached 19.1 times per year. The geographical extent of CHR has expanded slightly by 0.5 stations, and its average daily rainfall intensity has increased by 3.7 mm d-1. The contribution of CHRs to total rainfall amount and the frequency of daily precipitation have increased by 63.1% and 22.7%, respectively, partly due to a significant decrease in light rains. In drying regions of North and Northeast China, the amounts of minimal CHRs have had no significant trend in recent years, probably due to warming in these arid regions enhancing atmospheric conveetivity at individual stations. 展开更多
关键词 cluster analysis heavy rain cIimate extremes geographical correlation.
下载PDF
THE IMPACT OF DIFFERENT PHYSICAL PROCESSES AND THEIR PARAMETERIZATIONS ON FORECAST OF A HEAVY RAINFALL IN SOUTH CHINA IN ANNUALLY FIRST RAINING SEASON 被引量:6
10
作者 张旭斌 万齐林 +2 位作者 薛纪善 丁伟钰 李昊睿 《Journal of Tropical Meteorology》 SCIE 2015年第2期194-210,共17页
An ensemble prediction system based on the GRAPES model, using multi-physics, is used to discuss the influence of different physical processes in numerical models on forecast of heavy rainfall in South China in the an... An ensemble prediction system based on the GRAPES model, using multi-physics, is used to discuss the influence of different physical processes in numerical models on forecast of heavy rainfall in South China in the annually first raining season(AFRS). Pattern, magnitude and area of precipitation, evolution of synoptic situation, as well as apparent heat source and apparent moisture sink between different ensemble members are comparatively analyzed. The choice of parameterization scheme for land-surface processes gives rise to the largest influence on the precipitation prediction. The influences of cumulus-convection and cloud-microphysics processes are mainly focused on heavy rainfall;the use of cumulus-convection parameterization tends to produce large-area and light rainfall. Change in parameterization schemes for land-surface and cumulus-convection processes both will cause prominent change in forecast of both dynamic and thermodynamic variables, while change in cloud-microphysics processes show primary impact on dynamic variables. Comparing simplified Arakawa-Schubert and Kain-Fritsch with Betts-Miller-Janjic schemes, SLAB with NOAH schemes, as well as both WRF single moment 6-class and NCEP 3-class with simplified explicit schemes of phase-mixed cloud and precipitation shows that the former predicts stronger low-level jets and high humidity concentration, more convective rainfall and local heavy rainfall, and have better performance in precipitation forecast. Appropriate parameterization schemes can reasonably describe the physical process related to heavy rainfall in South China in the AFRS, such as low-level convergence, latent heat release, vertical transport of heat and water vapor, thereby depicting the multi-scale interactions of low-level jet and meso-scale convective systems in heavy rainfall suitably, and improving the prediction of heavy rainfall in South China in the AFRS as a result. 展开更多
关键词 numerical weather prediction heavy rainfall in South China in annually first raining season GRAPES model multi-physics parameterization ensemble prediction
下载PDF
THE CHARACTERISTICS OF SUMMER MONSOON AND TRANSPORTOF MOISTURE IN A HEAVY RAIN OVER SOUTH CHINA IN 1994 被引量:3
11
作者 吕梅 成新喜 +1 位作者 陈中一 陆汉城 《Journal of Tropical Meteorology》 SCIE 1999年第1期60-66,共7页
The trajectory of atmospheric particles and material lines on an isentropic surface are computed using the Lagrangian method. It is shown that the 1994 heavy rain in South China was closely linked to the summer monsoo... The trajectory of atmospheric particles and material lines on an isentropic surface are computed using the Lagrangian method. It is shown that the 1994 heavy rain in South China was closely linked to the summer monsoon, especially the tropical monsoon in East Asia. which plays a decisive role. The method is useful in tracking the source area and evolution of water moisture and analyzing the transporting part of airflow for water moisture. 展开更多
关键词 heavy rain LAGRANGIAN method MONSOON
下载PDF
Statistical Prediction of Heavy Rain in South Korea 被引量:3
12
作者 Keon Tae SOHN Jeong Hyeong LEE +1 位作者 Soon Hwan LEE Chan Su RYU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2005年第5期703-710,共8页
This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul,... This study is aimed at the development of a statistical model for forecasting heavy rain in South Korea. For the 3-hour weather forecast system, the 10 km×10 km area-mean amount of rainfall at 6 stations (Seoul, Daejeon, Gangreung, (Jwangju, Busan, and Jeju) in South Korea are used. And the corresponding 45 synoptic factors generated by the numerical model are used as potential predictors. Four statistical forecast models (linear regression model, logistic regression model, neural network model and decision tree model) for the occurrence of heavy rain are based on the model output statistics (MOS) method. They are separately estimated by the same training data. The thresholds are considered to forecast the occurrence of heavy rain because the distribution of estimated values that are generated by each model is too skewed. The results of four models are compared via Heidke skill scores. As a result, the logistic regression model is recommended. 展开更多
关键词 heavy rain model output statistics linear regression logistic regression neural networks decision tree
下载PDF
Analysis of Causes for an Uncommon Persistent Heavy Rain During Winter 被引量:4
13
作者 QIN Li HUANG Hai-hong WEN Shui-rong 《Meteorological and Environmental Research》 CAS 2011年第2期53-57,共5页
[Objective] The aim was to study the causes for one large scale of consecutive rainstorm process in the winter of 2010 in Guangxi. [Method] The characteristics and causes of the uncommon persistent heavy rain occurrin... [Objective] The aim was to study the causes for one large scale of consecutive rainstorm process in the winter of 2010 in Guangxi. [Method] The characteristics and causes of the uncommon persistent heavy rain occurring in Guangxi in January, 2010 were analyzed by using synoptic observation data, NCEP 1°×1° per six hours Global Data Assimilation System reanalysis data and satellite image. [Result] The results showed that this persistent heavy rain process was associated with abnormal intensity and the stability of the western pacific subtropical high. The heavy rain was caused by the cloud system maintaining for a long time on the edge of subtropical high. The convergence of the infrequent southeast jet was the primary cause of the uncommon heavy rain. MPV1>0, and MPV2<0 at 700 hPa were the favorable conditions for the heavy rain. The magnitude of MPV1 and MPV2 was equivalent. [Conclusion] The study provided reference for the forecast of the following similar extreme weather. 展开更多
关键词 heavy rain occurring during winter PERSISTENT CAUSE Analysis GUANGXI China
下载PDF
CHARACTERISTICS OF THE LATENT HEAT DUE TO DIFFERENT CLOUD MICROPHYSICAL PROCESSES AND THEIR INFLUENCE ON AN AUTUMN HEAVY RAIN EVENT OVER HAINAN ISLAND 被引量:2
14
作者 李江南 麦雪湖 +1 位作者 李芳洲 毛江玉 《Journal of Tropical Meteorology》 SCIE 2016年第S1期57-66,共10页
We analyzed cloud microphysical processes' latent heat characteristics and their influence on an autumn heavy rain event over Hainan Island,China,using the mesoscale numerical model WRF and WRF-3DVAR system.We fou... We analyzed cloud microphysical processes' latent heat characteristics and their influence on an autumn heavy rain event over Hainan Island,China,using the mesoscale numerical model WRF and WRF-3DVAR system.We found that positive latent heat occurred far above the zero layer,while negative latent heat occurred mainly under the zero layer.There was substantially more positive latent heat than negative latent heat,and the condensation heating had the most important contribution to the latent heat increase.The processes of deposition,congelation,melting and evaporation were all characterized by weakening after their intensification;however,the variations in condensation and sublimation processes were relatively small.The main cloud microphysical processes for positive latent heat were condensation of water vapor into cloud water,the condensation of rain,and the deposition increase of cloud ice,snow and graupel.The main cloud microphysical processes for negative latent heat were the evaporation of rain,the melting and enhanced melting of graupel.The latent heat releases due to different cloud microphysical processes have a significant impact on the intensity of precipitation.Without the condensation and evaporation of rain,the total latent heating would decrease and the moisture variables and precipitation would reduce significantly.Without deposition and sublimation,the heating in high levels would decrease and the precipitation would reduce.Without congelation and melting,the latent heating would enhance in the low levels,and the precipitation would reduce. 展开更多
关键词 heavy rain numerical simulation microphysical process LATENT heat
下载PDF
RELATIONSHIP BETWEEN THE VARIATION IN HORIZONTAL VORTICITY AND HEAVY RAIN DURING THE PROCESS OF MCC TURNING INTO BANDED MCSS 被引量:2
15
作者 丁治英 高松 常越 《Journal of Tropical Meteorology》 SCIE 2016年第2期220-232,共13页
Using real-time data and the WRF mesoscale model,a heavy rain event in the process of Mesoscale Convective Complex(MCC) turning into banded Mesoscale Convective Systems(MCSs) during 18-19 June 2010 is simulated and an... Using real-time data and the WRF mesoscale model,a heavy rain event in the process of Mesoscale Convective Complex(MCC) turning into banded Mesoscale Convective Systems(MCSs) during 18-19 June 2010 is simulated and analyzed in this paper.The results indicated that the formation and maintenance of a southwest vortex and shear line at 850 h Pa was the mesoscale system that affected the production of this heavy rain.The low-vortex heavy rain mainly happened in the development stage of MCC,and the circular MCC turned into banded MCSs in the late stage with mainly shear line precipitation.In the vicinity of rainfall area,the intense horizontal vorticity due to the vertical shear of u and v caused the rotation,and in correspondence,the ascending branch of the vertical circulation triggered the formation of heavy rain.The different distributions of u and v in the vertical direction produced varying vertical circulations.The horizontal vorticity near the low-vortex and shear line had obvious differences which led to varying reasons for heavy rain formation.The low-vortex heavy rain was mainly caused by the vertical shear of v,and the shear line rainfall formed owing to the vertical shear of both u and v.In this process,the vertical shear of v constituted the EW-trending rain band along the shear line,and the latitudinal non-uniformity of the vertical shear in u caused the vertical motion,which was closely related to the generation and development of MCSs at the shear line and the formation of multiple rain clusters.There was also a similar difference in the positively-tilting term(conversion from horizontal vorticity to vertical positive vorticity) near the rainfall center between the low-vortex and the shear line.The conversion in the low vortex was mainly determined by бv/бp<0,while that of the shear line by бu/бp<0.The scale of the conversion from the horizontal vorticity to vertical vorticity was relatively small,and it was easily ignored in the averaged state.The twisting term was mainly conducive to the reinforcement of precipitation,whereas its contribution to the development of southwest vortex and shear line was relatively small. 展开更多
关键词 heavy rain Mesoscale Convective Systems(MCSs) numerical simulation horizontal vorticity twisting term
下载PDF
THE USE OF RADAR DATA IN THE NUMERICAL SIMULATION OF HEAVY RAINFALLS IN THE CHANGJIANG-HUAIHE RIVER BASIN 被引量:1
16
作者 郭霞 党人庆 葛文忠 《Journal of Tropical Meteorology》 SCIE 2000年第2期212-218,共7页
It is important for predictions of heavy rainfall to include radar data to provide better reflection of moisture. Numerical experiments were carried out with real cases of heavy rains in the Changjiang (Yangtze)-Huaih... It is important for predictions of heavy rainfall to include radar data to provide better reflection of moisture. Numerical experiments were carried out with real cases of heavy rains in the Changjiang (Yangtze)-Huaihe River Basin using a PSU/NCAR mesoscale model that incorporated radar data. Processed radar data were added to the model to change the analysis of initial humidity field before 24-h numerical simulations were made and the results compared with a control experiment. It is suggested that the radar-data-incorporated numerical predictions could produce locations of precipitation areas and maximum rainfall that are closer to reality than the control, due to the fact that moisture and converging updraft are strengthened in the middle and lower levels of the troposphere in the area of heavy rains and areas nearby. The work is expected to improve numerical modeling and forecasts of heavy rains in middle and lower latitudes of China. 展开更多
关键词 heavy rains RADAR ECHO NUMERICAL simulat
下载PDF
Comparative Analysis on the Rainfall and Snowfall Weather with Close Interval Time and the Key Point of Forecast 被引量:1
17
作者 齐杰 王浩 +1 位作者 高松影 孙连强 《Meteorological and Environmental Research》 CAS 2010年第5期37-40,共4页
From the circulation situation,the influence system,the temperature stratification characteristics in middle and low levels,the application of numerical forecast products and so on,the rainfall and snowfall weather pr... From the circulation situation,the influence system,the temperature stratification characteristics in middle and low levels,the application of numerical forecast products and so on,the rainfall and snowfall weather processes with shorter interval time in February of 2009 were contrasted and analyzed.The results showed that it not only needed analyze in detail the vertical distribution situation of temperature,but also needed exactly forecast the invasion time of cold air and the decline speed of temperature to judge the precipitation form in winter was the rain or the snow.Particularly,the temperature threshold in high-low level which coordinated with the boundary of rain and snow was the key point of rain and snow forecast.Before the precipitation,different temperatures in high-altitude and on the ground were main causes of different precipitation natures. 展开更多
关键词 rain and snow Characteristic Contrast FORECAST China
下载PDF
Diagnostic Analysis on Heavy Rain Process of the Northeast-moving Southwest Vortex 被引量:1
18
作者 Rao Xiaoqin Wang Shigong 《Meteorological and Environmental Research》 CAS 2019年第3期1-10,17,共11页
The moving path of southwest vortex and the mechanism of heavy rain in the north were studied in order to find out the forecasting point of the northern heavy rain,so as to improve the forecasting ability of the heavy... The moving path of southwest vortex and the mechanism of heavy rain in the north were studied in order to find out the forecasting point of the northern heavy rain,so as to improve the forecasting ability of the heavy rain disastrous weather.A large-scale heavy rain process in northern China from 18 to 21 July 2010 was diagnostically analyzed using meteorological conventional and intensified observation data and NCEP 1°× 1° reanalysis data.The result showed that the southwest vortex moved northeastward under the guidance of southwest airflow in the periphery of subtropical high,which was the direct influence system of the heavy rainfall.The heavy rainfall occurred on the east side of the symmetrical axis of the 700 hPa low vortex.The southwest jet provided abundant water vapor and potential instability energy for the occurrence of heavy rainfall.The changes of vorticity advection and temperature advection in the lower and middle troposphere were the leading causes of affecting the development and movement of the low vortex.The low vortex moved along the positive vorticity advection increasing region and the warm advection increasing region.The dry and cold air intruded into the low vortex from the middle layer,which promoted the generation and development of the unstable stratification of upper cold and lower warm,and provided unstable and triggering conditions for heavy rain.The water vapor transport from the Yellow Sea and the Bohai Sea was very abundant,and the water vapor flux was very high,reaching 30 g/(s·cm·hPa).It was the main reason for the maximum precipitation in Liaoning Province,which was the farthest from the southwest vortex source.The study deepened the understanding of the structural characteristics of the southwest vortex and revealed the dynamic mechanism of the northeast movement and development of the southwest vortex as well as the cause of rainstorm induced by interaction with other weather systems.It can provide some forecasting ideas and useful references for forecasting the movement of the southwest vortex and the heavy rain weather in the north. 展开更多
关键词 SOUTHWEST vortex Northeast-moving heavy rain VORTICITY advection Temperature advection
下载PDF
Implications from Subseasonal Prediction Skills of the Prolonged Heavy Snow Event over Southern China in Early 2008 被引量:2
19
作者 Keyue ZHANG Juan LI +1 位作者 Zhiwei ZHU Tim LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第11期1873-1888,共16页
An exceptionally prolonged heavy snow event(PHSE)occurred in southern China from 10 January to 3 February 2008,which caused considerable economic losses and many casualties.To what extent any dynamical model can predi... An exceptionally prolonged heavy snow event(PHSE)occurred in southern China from 10 January to 3 February 2008,which caused considerable economic losses and many casualties.To what extent any dynamical model can predict such an extreme event is crucial for disaster prevention and mitigation.Here,we found the three S2S models(ECMWF,CMA1.0 and CMA2.0)can predict the distribution and intensity of precipitation and surface air temperature(SAT)associated with the PHSE at 10-day lead and 10−15-day lead,respectively.The success is attributed to the models’capability in forecasting the evolution of two important low-frequency systems in the tropics and mid-latitudes[the persistent Siberian High and the suppressed phase of the Madden−Julian Oscillation(MJO)],especially in the ECMWF model.However,beyond the 15-day lead,the three models show almost no skill in forecasting this PHSE.The bias in capturing the two critical circulation systems is responsible for the low skill in forecasting the 2008 PHSE beyond the 15-day lead.On one hand,the models cannot reproduce the persistence of the Siberian High,which results in the underestimation of negative SAT anomalies over southern China.On the other hand,the models cannot accurately capture the suppressed convection of the MJO,leading to weak anomalous southerly and moisture transport,and therefore the underestimation of precipitation over southern China.The Singular Value Decomposition(SVD)analyses between the critical circulation systems and SAT/precipitation over southern China shows a robust historical relation,indicating the fidelity of the predictability sources for both regular events and extreme events(e.g.,the 2008 PHSE). 展开更多
关键词 prolonged heavy snow event S2S prediction models subseasonal prediction skill MJO Siberian High
下载PDF
Analysis on the Heavy Snow Weather Process in Benxi Area 被引量:1
20
作者 KOU Si-cong CAO Wen 《Meteorological and Environmental Research》 CAS 2011年第1期24-27,共4页
[Objective] The aim was to study the formation and development of a heavy snow in Benxi area. [Method] Based on conventional meteorological data, the formation and development of a heavy snow in Benxi area from Decemb... [Objective] The aim was to study the formation and development of a heavy snow in Benxi area. [Method] Based on conventional meteorological data, the formation and development of a heavy snow in Benxi area from December 4th to 5th in 2009 were analyzed from the aspects of weather situation evolution and physical quantity field feature. [Result] The heavy snow was caused by upper trough and North China cyclone. In this process, there was upper level divergence and lower level convergence over Benxi area, and it was warm at low attitude and cold at high attitude; southwest jet at low attitude transported water vapor from Bohai Sea to eastern Liaoning, which provided good water vapor condition for snow, but it didn’t reach heavy snow due to inadequate ascending force. The development of Ural Mountains high ridge played an important role in the snow process and the strengthened high ridge moving northward was beneficial to the southward movement of cold air and deepening of upper trough. Analysis on physical quantity field could provide reference for predicting beginning and ending time and strength of heavy snow. [Conclusion] The study could provide basis for the forecast of heavy snow. 展开更多
关键词 heavy snow Weather situation Physical quantity Process analysis Benxi area China
下载PDF
上一页 1 2 124 下一页 到第
使用帮助 返回顶部