Photoacoustic agents combining photodynamic therapy(PDT) and photothermal therapy(PTT) functions have emerged as potent theranostic agents for combating cancer. The molecular approaches for enhancing the near-infrared...Photoacoustic agents combining photodynamic therapy(PDT) and photothermal therapy(PTT) functions have emerged as potent theranostic agents for combating cancer. The molecular approaches for enhancing the near-infrared(NIR)-absorption and maximizing non-radiative energy transfer are essential for effective photoacoustic imaging(PAI) and therapy applications. In addition, such molecules with high specificity and affinity to cancer cells are urgently needed, which would further decrease the side effect during treatments. In this study, we applied a heavy-atom engineering strategy and introduced p-aminophenol,-thio, and-seleno moieties into NIR heptamethine cyanine(Cy7) skeleton(Cy7-X-NH_(2), X = O, S, Se) to significantly increase photothermal conversion efficiency for PTT and promote intersystem crossing for PDT.Additionally, we designed a series of nitroreductase(NTR)-activated photoacoustic probes(Cy7-X-NO_(2),X = O, S, Se), and target hypoxic tumors with NTR overexpression. Our prostate cancer targeting probe,Cy7-Se-NO_(2)-KUE, exhibited specific tumor photoacoustic signals and effective tumor killing through outstanding synergistic PTT/PDT in vivo. These findings highlighted a versatile strategy for cancer photoacoustic diagnosis and enhanced phototherapy.展开更多
To attain high efficiencies in hybrid white organic light-emitting diodes(WOLEDs),mutual quenching of the fluorophors and phosphors should be minimized.Efforts have been devoted to reducing the triplet quenching of ph...To attain high efficiencies in hybrid white organic light-emitting diodes(WOLEDs),mutual quenching of the fluorophors and phosphors should be minimized.Efforts have been devoted to reducing the triplet quenching of phosphors;however,the quenching of fluorophors by the external heavy-atom effect(EHA)introduced by the phosphors is often ignored.Here,we observed that conventional fluorophors and fluorophors with thermally activated delayed fluorescence(TADF)behave differently in the presence of EHA perturbers.The efficiencies of the conventional fluorophors suffer greatly from the EHA,whereas the TADF fluorophors exhibit negligible changes,which makes TADF materials ideal fluorophors for hybrid devices.WOLEDs using a blue TADF fluorophor and an orange phosphor achieve a maximum forward viewing external quantum efficiency of 19.6%and a maximum forward viewing power efficiency of 50.2 lm W^(-1),among the best values for hybrid WOLEDs.This report is the first time that the EHA effect has been considered in hybrid WOLEDs and that a general strategy toward highly efficient hybrid WOLEDs with simple structures is proposed.展开更多
The preparation of amorphous pure organic room-temperature phosphorescence materials with high efficiency is still a challenging task. Herein, we introduce a CB[6] derivative-based supramolecular selfassembling strate...The preparation of amorphous pure organic room-temperature phosphorescence materials with high efficiency is still a challenging task. Herein, we introduce a CB[6] derivative-based supramolecular selfassembling strategy. A water soluble and ellipsoidal deformed CB[6] derivative is used to self-assemble with 4-(4-bromophenyl)-1-methylpyridin-1-ium chloride, bromide and hexafluorophosphate in water. After freeze-drying, the obtained amorphous complexes exhibit brilliant green phosphorescence emission under ambient conditions, with phosphorescence efficiency up to 59%, 60% and 72%, respectively. This is the first report of amorphous non-polymeric pure organic room-temperature phosphorescence with such a high efficiency. In view of the dynamic self-assembling property, the complexes are responsive to water,which could enable information encryption.展开更多
The photophysical properties of a series of hydroxyl Corroles, Corrole-F, Corrole-Cl, Corrole-Br, Corrole-I and Corrole-2I, have been investigated by steady-state and time-resolved transient spectroscopy. The absorpti...The photophysical properties of a series of hydroxyl Corroles, Corrole-F, Corrole-Cl, Corrole-Br, Corrole-I and Corrole-2I, have been investigated by steady-state and time-resolved transient spectroscopy. The absorption spectra show a strong peak around 420 nm corresponding to B band and several weak Q absorption bands between 450 nm and 650 nm, exhibiting much stronger Q band absorption than that of porphyrin. The absorptions of these Corroles increase with the atom weight and the number of halogen atoms. All samples show similar fluorescence characteristics of an emission peak at 650 nm. The fluorescence intensities significantly decrease with the atom weight and the number of halogen atoms. The fluorescence quantum yield of Corrole-I is 0.947%, which is larger than that of Corrole-2I (0.381%). The fluorescence dynamics of the hydroxyl Corroles shows that both the fluorescence lifetime and the intersystem-crossing transition time of these Corroles decrease sharply with the increase of the atom weight and the number of halogen atoms, which may lead to the increase of the triplet state quantum yield. The heavy-atom effect on active oxygen of PDT has also been discussed by the end of this paper.展开更多
基金partially supported by the National Key R&D Program of China (No.2022YFE0199700)the National Natural Science Foundation of China (NSFC) projects (Nos.22077139and 22122705)CAMS Innovation Fund for Medical Sciences(CIFMS)(No.2022-I2M-2–002)。
文摘Photoacoustic agents combining photodynamic therapy(PDT) and photothermal therapy(PTT) functions have emerged as potent theranostic agents for combating cancer. The molecular approaches for enhancing the near-infrared(NIR)-absorption and maximizing non-radiative energy transfer are essential for effective photoacoustic imaging(PAI) and therapy applications. In addition, such molecules with high specificity and affinity to cancer cells are urgently needed, which would further decrease the side effect during treatments. In this study, we applied a heavy-atom engineering strategy and introduced p-aminophenol,-thio, and-seleno moieties into NIR heptamethine cyanine(Cy7) skeleton(Cy7-X-NH_(2), X = O, S, Se) to significantly increase photothermal conversion efficiency for PTT and promote intersystem crossing for PDT.Additionally, we designed a series of nitroreductase(NTR)-activated photoacoustic probes(Cy7-X-NO_(2),X = O, S, Se), and target hypoxic tumors with NTR overexpression. Our prostate cancer targeting probe,Cy7-Se-NO_(2)-KUE, exhibited specific tumor photoacoustic signals and effective tumor killing through outstanding synergistic PTT/PDT in vivo. These findings highlighted a versatile strategy for cancer photoacoustic diagnosis and enhanced phototherapy.
基金We would like to thank the National Natural Science Foundation of China(Grant Nos.51173096,21161160447 and 61177023)for financial support.
文摘To attain high efficiencies in hybrid white organic light-emitting diodes(WOLEDs),mutual quenching of the fluorophors and phosphors should be minimized.Efforts have been devoted to reducing the triplet quenching of phosphors;however,the quenching of fluorophors by the external heavy-atom effect(EHA)introduced by the phosphors is often ignored.Here,we observed that conventional fluorophors and fluorophors with thermally activated delayed fluorescence(TADF)behave differently in the presence of EHA perturbers.The efficiencies of the conventional fluorophors suffer greatly from the EHA,whereas the TADF fluorophors exhibit negligible changes,which makes TADF materials ideal fluorophors for hybrid devices.WOLEDs using a blue TADF fluorophor and an orange phosphor achieve a maximum forward viewing external quantum efficiency of 19.6%and a maximum forward viewing power efficiency of 50.2 lm W^(-1),among the best values for hybrid WOLEDs.This report is the first time that the EHA effect has been considered in hybrid WOLEDs and that a general strategy toward highly efficient hybrid WOLEDs with simple structures is proposed.
基金financially supported by Shanghai Municipal Science and Technology Major Project (No.2018SHZDZX03)National Natural Science Foundation of China (Nos.21788102,21572063)the Fundamental Research Funds for the Central Universities。
文摘The preparation of amorphous pure organic room-temperature phosphorescence materials with high efficiency is still a challenging task. Herein, we introduce a CB[6] derivative-based supramolecular selfassembling strategy. A water soluble and ellipsoidal deformed CB[6] derivative is used to self-assemble with 4-(4-bromophenyl)-1-methylpyridin-1-ium chloride, bromide and hexafluorophosphate in water. After freeze-drying, the obtained amorphous complexes exhibit brilliant green phosphorescence emission under ambient conditions, with phosphorescence efficiency up to 59%, 60% and 72%, respectively. This is the first report of amorphous non-polymeric pure organic room-temperature phosphorescence with such a high efficiency. In view of the dynamic self-assembling property, the complexes are responsive to water,which could enable information encryption.
基金supported by the Open Fund of the State Key Laboratory of Optoelectronic Materials and Technologies (Sun Yat-sen Unversity)the Science Fundation of Guangdong (Grant No. 9351027501000003)
文摘The photophysical properties of a series of hydroxyl Corroles, Corrole-F, Corrole-Cl, Corrole-Br, Corrole-I and Corrole-2I, have been investigated by steady-state and time-resolved transient spectroscopy. The absorption spectra show a strong peak around 420 nm corresponding to B band and several weak Q absorption bands between 450 nm and 650 nm, exhibiting much stronger Q band absorption than that of porphyrin. The absorptions of these Corroles increase with the atom weight and the number of halogen atoms. All samples show similar fluorescence characteristics of an emission peak at 650 nm. The fluorescence intensities significantly decrease with the atom weight and the number of halogen atoms. The fluorescence quantum yield of Corrole-I is 0.947%, which is larger than that of Corrole-2I (0.381%). The fluorescence dynamics of the hydroxyl Corroles shows that both the fluorescence lifetime and the intersystem-crossing transition time of these Corroles decrease sharply with the increase of the atom weight and the number of halogen atoms, which may lead to the increase of the triplet state quantum yield. The heavy-atom effect on active oxygen of PDT has also been discussed by the end of this paper.