Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures intr...Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures intro- ducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature moni- toring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing tech- nology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articlesto guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.展开更多
Thermal error is one of the main factors that influence the machining accuracy of computer numerical control(CNC)machine tools.It is usually reduced by thermal error compensation.Temperature field monitoring and key t...Thermal error is one of the main factors that influence the machining accuracy of computer numerical control(CNC)machine tools.It is usually reduced by thermal error compensation.Temperature field monitoring and key temperature measurement point(TMP)selection are the bases of thermal error modeling and compensation for CNC machine tools.Compared with small-and medium-sized CNC machine tools,heavy-duty CNC machine tools require the use of more temperature sensors to measure their temperature comprehensively because of their larger size and more complex heat sources.However,the presence of many TMPs counteracts the movement of CNC machine tools due to sensor cables,and too many temperature variables may adversely influence thermal error modeling.Novel temperature sensors based on fiber Bragg grating(FBG)are developed in this study.A total of 128 FBG temperature sensors that are connected in series through a thin optical fiber are mounted on a heavy-duty CNC machine tool to monitor its temperature field.Key TMPs are selected using these large-scale FBG temperature sensors by using the density-based spatial clustering of applications with noise algorithm to reduce the calculation workload and avoid problems in the coupling of TMPs for thermal error modeling.Back propagation neural network thermal error prediction models are established to verify the performance of the proposed TMP selection method.Results show that the number of TMPs is reduced from 128 to 5,and the developed model demonstrates good prediction effects and strong robustness under different working conditions of the heavy-duty CNC machine tool.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51475343)International Science and Technology Cooperation Program of China(Grant No.2015DFA70340)
文摘Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures intro- ducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature moni- toring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing tech- nology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articlesto guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.
基金The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China(Grant Nos.51475347 and 51475343)the International Science and Technology Cooperation Program of China(Grant No.2015DFA70340)The contributions of all collaborators in the mentioned projects are also well-appreciated.
文摘Thermal error is one of the main factors that influence the machining accuracy of computer numerical control(CNC)machine tools.It is usually reduced by thermal error compensation.Temperature field monitoring and key temperature measurement point(TMP)selection are the bases of thermal error modeling and compensation for CNC machine tools.Compared with small-and medium-sized CNC machine tools,heavy-duty CNC machine tools require the use of more temperature sensors to measure their temperature comprehensively because of their larger size and more complex heat sources.However,the presence of many TMPs counteracts the movement of CNC machine tools due to sensor cables,and too many temperature variables may adversely influence thermal error modeling.Novel temperature sensors based on fiber Bragg grating(FBG)are developed in this study.A total of 128 FBG temperature sensors that are connected in series through a thin optical fiber are mounted on a heavy-duty CNC machine tool to monitor its temperature field.Key TMPs are selected using these large-scale FBG temperature sensors by using the density-based spatial clustering of applications with noise algorithm to reduce the calculation workload and avoid problems in the coupling of TMPs for thermal error modeling.Back propagation neural network thermal error prediction models are established to verify the performance of the proposed TMP selection method.Results show that the number of TMPs is reduced from 128 to 5,and the developed model demonstrates good prediction effects and strong robustness under different working conditions of the heavy-duty CNC machine tool.