At high altitudes, power of an internal combustion engine reduces due to air density reduction. In turbocharged diesel engine this issue affects the performance of the compressor and can result in unstable operation o...At high altitudes, power of an internal combustion engine reduces due to air density reduction. In turbocharged diesel engine this issue affects the performance of the compressor and can result in unstable operation of the turbocharger if the power is not decreased by engine actuator. Mainly for testing the effects of altitude in the test room, air throttle valve and combustion air handling unit were used to reduce the suction air pressure. Easier and cheaper solution to consider effect of altitude on engine performance is to mask part of the air filter to reduce the suction pressure. In this paper, pressure drop against 0%, 26%, 52%, 66% and 74% of air filter hole’s masking for different mass flow rates has been studied by computational fluid dynamics. The analysis output mass flow rate-pressure diagram for the air filter, will be used as input data in the GT-Power software which is a one-dimensional computational fluid dynamics software and the effect of masking on altitude and performance at different revolutions per minute of the engine is investigated. Also, an experimental and computational fluid dynamics study was carried out to predict altitude against different proportions of air filter hole’s masking at 1000 rpm. The predicted results are validated by comparing with those of experimental data. A good agreement between the predicted and experimental values ensures the accuracy of the numerical predictions with the present work.展开更多
Three-dimensional models, consisting of the flame kernel formation model, flame kernel development model and natural gas single step reaction model, are used to analyze the contribution of cyclic equivalence ratio var...Three-dimensional models, consisting of the flame kernel formation model, flame kernel development model and natural gas single step reaction model, are used to analyze the contribution of cyclic equivalence ratio variations to cyclic variations in the compressed natural gas (CNG) lean burn spark ignition engine. Computational results including the contributions of equivalence ratio cyclic variations to each combustion stage and effects of engine speed to the extent of combustion variations are discussed. It is concluded that the equivalence ratio variations affect mostly the main stage of combustion and hardly influence initial kernel development stage.展开更多
A three dimensional model which considers the effects of turbulence and detailed chemi cal kinetics is built to simulate the combustion process of engine fueled by compressed nature gas (CNG). The model is accompli...A three dimensional model which considers the effects of turbulence and detailed chemi cal kinetics is built to simulate the combustion process of engine fueled by compressed nature gas (CNG). The model is accomplished by integrating CFD software KIVA3V and chemical kinetic soft- ware CHEMKINII. Meanwhile, a turbulence combustion model which is suitable for describing the reaction rate under the coupled simulation is developed to balance the effects of turbulence and de tailed chemical kinetics. To reduce the computation time, subsequent development of the simulation code is realized, which enables the simulation code to have the function of parallel computing and run on parallel computing facility based on message passing interface (MPI). The coupled software is used to simulate the combustion process of spark ignition CNG engine. The results show that sim ulation data have a good consistency with experimental results and parallel computing has good effi ciency and accelerate ratio.展开更多
The reduction of fuel consumption in engines is always considered of vital importance.Along these lines,in this work,this goal was attained by optimizing the heavy-duty commercial vehicle engine control strategy.More ...The reduction of fuel consumption in engines is always considered of vital importance.Along these lines,in this work,this goal was attained by optimizing the heavy-duty commercial vehicle engine control strategy.More specifically,at first,a general first principles model for heavy-duty commercial vehicles and a transient fuel consumptionmodel for heavy-duty commercial vehicles were developed and the parameters were adjusted to fit the empirical data.The accuracy of the proposed modelwas demonstrated fromthe stage and the final results.Next,the control optimization problem resulting in low fuel consumption in heavy commercial vehicles was described,with minimal fuel usage as the optimization goal and throttle opening as the control variable.Then,a time-continuous engine management approach was assessed.Next,the factors that influence low fuel consumption in heavy-duty commercial vehicles were systematically examined.To reduce the computing complexity,the control strategies related to the time constraints of the engine were parametrized using three different methods.The most effective solution was obtained by applying a global optimization strategy because the constrained optimization problem was nonlinear.Finally,the effectiveness of the low-fuel consumption engine control strategy was demonstrated by comparing the simulated and field test results.展开更多
The oxidization resistance of the Ni76Cr19A1Ti alloy was studied by a static oxidization experiment at 600-800℃. The results show that the oxidation behavior of the alloy can be explained by a kinetic equation: (△...The oxidization resistance of the Ni76Cr19A1Ti alloy was studied by a static oxidization experiment at 600-800℃. The results show that the oxidation behavior of the alloy can be explained by a kinetic equation: (△m/S)2 = Kpt + C, where Kp is a kinetic constant of the nickel-base alloy. The higher the experimental temperature, the higher the value of Kp. It is discovered that the microstructure of the oxide scales is compact and the thickness of it is less than 10 μm The oxidization of the alloy is in the first grade. It is also found that the oxide scales are mainly composed of Cr2O3 and TiO2. Chrome and titanium react more easily with oxygen at temperatures under the operating mode.展开更多
The heavy-duty vehicle fleet involved in delivering water and sand makes noticeable issues of exhaust emissions and fuel consumption in the process of shale gas development. To examine the possibility of converting th...The heavy-duty vehicle fleet involved in delivering water and sand makes noticeable issues of exhaust emissions and fuel consumption in the process of shale gas development. To examine the possibility of converting these heavy-duty diesel engines to run on natural gas-diesel dual-fuel, a transient engine duty cycle representing the real-world engine working conditions is necessary. In this paper, a methodology is proposed, and a target engine duty cycle comprising of 2231 seconds is developed from on-road data collected from 11 on-road sand and water hauling trucks. The similarity of inherent characteristics of the developed cycle and the base trip observed is evidenced by the 2.05% error of standard deviation and average values for normalized engine speed and engine torque. Our results show that the proposed approach is expected to produce a representative cycle of in-use heavy-duty engine behavior.展开更多
A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different inject...A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different injection modes, the mixture formation and combustion of CNG low-pressure direct injection (LPDI) engines were studied under varying factors such as air/ fuel ratio, injection timing. Meanwhile, three-dimensional simulations were adopted to explain the mixture formation mechanisms of CNG low-pressure compound direct injection (LPCDI) mode. On the basis of test results and simulation of the mixture homogeneous degree, the conception of injection window was proposed, and the LPCDI mode was proved to be more beneficial to the mixture concentration stratification formation in cylinder under lean-burning conditions, which resulted in effective combustion and stability.展开更多
为解决在选择性催化还原技术(selective catalytic reduction,SCR)的控制策略开发中局部线性模型树(local linear model tree,LOLIMOT)排放模型预测精度不足的问题,提出一种通过优化空间边界,将原模型的超矩形输入空间约束在物理意义范...为解决在选择性催化还原技术(selective catalytic reduction,SCR)的控制策略开发中局部线性模型树(local linear model tree,LOLIMOT)排放模型预测精度不足的问题,提出一种通过优化空间边界,将原模型的超矩形输入空间约束在物理意义范围内的改进LOLIMOT模型。通过某天然气发动机的辨识试验,从分布特征和计算原理角度,分析了该方法对预测结果的影响。结果表明:与原算法相比,改进算法的线性相关度R2提升了1.9%,验证了改进策略的有效性。改进LOLIMOT算法具备较高的收敛速度和稳定性,在排放模型领域具备一定的应用优势。展开更多
文摘At high altitudes, power of an internal combustion engine reduces due to air density reduction. In turbocharged diesel engine this issue affects the performance of the compressor and can result in unstable operation of the turbocharger if the power is not decreased by engine actuator. Mainly for testing the effects of altitude in the test room, air throttle valve and combustion air handling unit were used to reduce the suction air pressure. Easier and cheaper solution to consider effect of altitude on engine performance is to mask part of the air filter to reduce the suction pressure. In this paper, pressure drop against 0%, 26%, 52%, 66% and 74% of air filter hole’s masking for different mass flow rates has been studied by computational fluid dynamics. The analysis output mass flow rate-pressure diagram for the air filter, will be used as input data in the GT-Power software which is a one-dimensional computational fluid dynamics software and the effect of masking on altitude and performance at different revolutions per minute of the engine is investigated. Also, an experimental and computational fluid dynamics study was carried out to predict altitude against different proportions of air filter hole’s masking at 1000 rpm. The predicted results are validated by comparing with those of experimental data. A good agreement between the predicted and experimental values ensures the accuracy of the numerical predictions with the present work.
基金Sponsored by the National Natural Science Foundation of China(50406003)
文摘Three-dimensional models, consisting of the flame kernel formation model, flame kernel development model and natural gas single step reaction model, are used to analyze the contribution of cyclic equivalence ratio variations to cyclic variations in the compressed natural gas (CNG) lean burn spark ignition engine. Computational results including the contributions of equivalence ratio cyclic variations to each combustion stage and effects of engine speed to the extent of combustion variations are discussed. It is concluded that the equivalence ratio variations affect mostly the main stage of combustion and hardly influence initial kernel development stage.
基金Supported by the National Natural Science Foundation of China(50976012)
文摘A three dimensional model which considers the effects of turbulence and detailed chemi cal kinetics is built to simulate the combustion process of engine fueled by compressed nature gas (CNG). The model is accomplished by integrating CFD software KIVA3V and chemical kinetic soft- ware CHEMKINII. Meanwhile, a turbulence combustion model which is suitable for describing the reaction rate under the coupled simulation is developed to balance the effects of turbulence and de tailed chemical kinetics. To reduce the computation time, subsequent development of the simulation code is realized, which enables the simulation code to have the function of parallel computing and run on parallel computing facility based on message passing interface (MPI). The coupled software is used to simulate the combustion process of spark ignition CNG engine. The results show that sim ulation data have a good consistency with experimental results and parallel computing has good effi ciency and accelerate ratio.
基金This work was supported in part by the Science and Technology Major Project of Guangxi under Grant AA22068001in part by the Key Research and Development Program of Guangxi AB21196029+3 种基金in part by the Project of National Natural Science Foundation of China 51965012in part by the Scientific Research and TechnologyDevelopment in Liuzhou 2022AAA0102,2021AAA0104 and 2021AAA0112in part by Agricultural Science and Technology Innovation and Extension Special Project of Jiangsu Province NJ2021-21,in part by the Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology,in part by the Guilin University of Electronic Technology 20-065-40-004Zin part by the Innovation Project of GUET Graduate Education 2022YCXS017.
文摘The reduction of fuel consumption in engines is always considered of vital importance.Along these lines,in this work,this goal was attained by optimizing the heavy-duty commercial vehicle engine control strategy.More specifically,at first,a general first principles model for heavy-duty commercial vehicles and a transient fuel consumptionmodel for heavy-duty commercial vehicles were developed and the parameters were adjusted to fit the empirical data.The accuracy of the proposed modelwas demonstrated fromthe stage and the final results.Next,the control optimization problem resulting in low fuel consumption in heavy commercial vehicles was described,with minimal fuel usage as the optimization goal and throttle opening as the control variable.Then,a time-continuous engine management approach was assessed.Next,the factors that influence low fuel consumption in heavy-duty commercial vehicles were systematically examined.To reduce the computing complexity,the control strategies related to the time constraints of the engine were parametrized using three different methods.The most effective solution was obtained by applying a global optimization strategy because the constrained optimization problem was nonlinear.Finally,the effectiveness of the low-fuel consumption engine control strategy was demonstrated by comparing the simulated and field test results.
文摘The oxidization resistance of the Ni76Cr19A1Ti alloy was studied by a static oxidization experiment at 600-800℃. The results show that the oxidation behavior of the alloy can be explained by a kinetic equation: (△m/S)2 = Kpt + C, where Kp is a kinetic constant of the nickel-base alloy. The higher the experimental temperature, the higher the value of Kp. It is discovered that the microstructure of the oxide scales is compact and the thickness of it is less than 10 μm The oxidization of the alloy is in the first grade. It is also found that the oxide scales are mainly composed of Cr2O3 and TiO2. Chrome and titanium react more easily with oxygen at temperatures under the operating mode.
文摘The heavy-duty vehicle fleet involved in delivering water and sand makes noticeable issues of exhaust emissions and fuel consumption in the process of shale gas development. To examine the possibility of converting these heavy-duty diesel engines to run on natural gas-diesel dual-fuel, a transient engine duty cycle representing the real-world engine working conditions is necessary. In this paper, a methodology is proposed, and a target engine duty cycle comprising of 2231 seconds is developed from on-road data collected from 11 on-road sand and water hauling trucks. The similarity of inherent characteristics of the developed cycle and the base trip observed is evidenced by the 2.05% error of standard deviation and average values for normalized engine speed and engine torque. Our results show that the proposed approach is expected to produce a representative cycle of in-use heavy-duty engine behavior.
基金Supported by National High Technology Research and Development Program ("863" Program) of China (No.2008AA11A114)
文摘A set of compressed natural gas (CNG) multi-point direct injection system of spark-ignited engines and the corresponding measurement and data acquisition systems were developed in this paper. Based on different injection modes, the mixture formation and combustion of CNG low-pressure direct injection (LPDI) engines were studied under varying factors such as air/ fuel ratio, injection timing. Meanwhile, three-dimensional simulations were adopted to explain the mixture formation mechanisms of CNG low-pressure compound direct injection (LPCDI) mode. On the basis of test results and simulation of the mixture homogeneous degree, the conception of injection window was proposed, and the LPCDI mode was proved to be more beneficial to the mixture concentration stratification formation in cylinder under lean-burning conditions, which resulted in effective combustion and stability.
文摘为解决在选择性催化还原技术(selective catalytic reduction,SCR)的控制策略开发中局部线性模型树(local linear model tree,LOLIMOT)排放模型预测精度不足的问题,提出一种通过优化空间边界,将原模型的超矩形输入空间约束在物理意义范围内的改进LOLIMOT模型。通过某天然气发动机的辨识试验,从分布特征和计算原理角度,分析了该方法对预测结果的影响。结果表明:与原算法相比,改进算法的线性相关度R2提升了1.9%,验证了改进策略的有效性。改进LOLIMOT算法具备较高的收敛速度和稳定性,在排放模型领域具备一定的应用优势。