The ongoing need for better fuel economy and lower exhaust pollution of vehicles has increased the employment of electric power steering(EPS)in automotives.Optimal design of EPS for a product family reduces the develo...The ongoing need for better fuel economy and lower exhaust pollution of vehicles has increased the employment of electric power steering(EPS)in automotives.Optimal design of EPS for a product family reduces the development and fabrication costs significantly.In this paper,the TOPSIS method along with the NSGA-Ⅱis employed to find an optimum family of EPS for an automotive platform.A multi-objective optimization problem is defined considering road feel,steering portability,RMS of Ackerman error,and product family penalty function(PFPF)as the conflicting objective functions.The results for the single objective optimization problems and the ones for the multi-objective optimization problem,as well as two suggested trade-off design points are presented,compared and discussed.For the two suggested points,performance at one objective function is deteriorated by about 1%,while the commonality is increased by 20%–40%,which shows the effectiveness of the proposed method in first finding the non-dominated design points and then selecting the trade-off among the obtained points.The results indicate that the obtained trade-off points have superior performance within the product family with maximum number of common parts.展开更多
For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing leading to transmission failure and other adverse effects,but in the gear optimization...For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing leading to transmission failure and other adverse effects,but in the gear optimization design and little consideration of thermal transmission errors and thermal resonance and other factors,while the conventional multi-objective optimization design methods are difficult to achieve the optimum of each objective.Based on this,the paper proposes a gear multi-objective reliability optimisation design method based on the APCK-SORA model.The PC-Kriging model and the adaptive k-means clustering method are combined to construct an adaptive reliability analysis method(APCK for short),which is then integrated with the SORA optimisation algorithm.The objective function is the lightweight of gear pair,the maximum overlap degree and the maximum anti-glue strength;the basic parameters of the gear and the sensitivity parameters affecting the thermal deformation and thermal resonance of the gear are used as design variables;the amount of thermal deformation and thermal resonance,as well as the contact strength of the tooth face and the bending strength of the tooth root are used as constraints;the optimisation results show that:the mass of the gear is reduced by 0.13kg,the degree of overlap is increased by 0.016 and the coefficient of safety against galling Compared with other methods,the proposed method is more efficient than the other methods in meeting the multi-objective reliability design requirements of lightweighting,ensuring smoothness and anti-galling capability of high-speed heavy-duty gears.展开更多
Large torque can be output by the single gimbal control momentum gyroscope (SGCMG) based on the principle of the gyroscopic precession. However, the singularity is a major obstacle to successfully implement the task o...Large torque can be output by the single gimbal control momentum gyroscope (SGCMG) based on the principle of the gyroscopic precession. However, the singularity is a major obstacle to successfully implement the task of the attitude control. The singularity can be avoided by the additional variable flywheel speed of variable speed control moment gyroscopes (VSCMG). Unfortunately, some kind of singularity cannot be effectively avoided. Consequently, the output toque can be only supported by the reaction torque of the flywheel when the singularity is encountered, and the consume power that is determined by the flywheel speed and reaction torque can be greatly increased when the flywheel spin rate over one thousand revolutions per minute. In this paper, the pyramid configuration with variable skew angle of the VSCMG is considered. A new steering law for the VSCMG with variable skew angle is proposed. The singularity that cannot be avoided by the varying flywheel speed can be effectively avoided with assisting of varying the skew angle. Consequently, the requirement of flywheel torque can be reduced. At last, the optimizing VSCMG with variable skew angle can be cast as a multi-objective function with multi-constraints. The particle swarm optimization method is used to solve the optimizing problem. In summary, the VSCMG with variable skew angle can be redesigned with considering of the singularity avoidance and minimizing system power.展开更多
In this paper, in order to design a fast steering mirror(FSM) with large deflection angle and high linearity, a deflection angle detecting system(DADS) using quadrant detector(QD) is developed. And the mathematical mo...In this paper, in order to design a fast steering mirror(FSM) with large deflection angle and high linearity, a deflection angle detecting system(DADS) using quadrant detector(QD) is developed. And the mathematical model describing DADS is established by analyzing the principle of position detecting and error characteristics of QD. Based on this mathematical model, the variation tendencies of deflection angle and linearity of FSM are simulated. Then, by changing the parameters of the DADS, the optimization of deflection angle and linearity of FSM is demonstrated. Finally, a QD-based FSM is designed based on this method, which achieves ±2° deflection angle and 0.72% and 0.68% linearity along x and y axis, respectively. Moreover, this method will be beneficial to the design of large deflection angle and high linearity FSM.展开更多
Based on the multidiscipline design optimization theory, a multidiscipline collaborative optimization model of the differential steering system of electric vehicle with motorized wheels is built, with the steering eco...Based on the multidiscipline design optimization theory, a multidiscipline collaborative optimization model of the differential steering system of electric vehicle with motorized wheels is built, with the steering economy as the main system and the steering road feel, the steering flexibility and the mechanic character of the steering sensors as the subsystems. Considering the coupled relationship of each discipline, the main system is optimized by the multi-island algorithm and the subsystems are optimized by the sequential quadratic programming algorithm. The simulation results show that the steering economy can be optimized by the collaborative optimization, and that the system can get good steering road feel, good steering flexibility and good mechanic character of the steering sensors.展开更多
To meet the requirements of fast steering at low vehicle speed and slow steering at high vehicle speed,the automatic steering of agricultural chassis must control both the wheel steering angle and the steering angle’...To meet the requirements of fast steering at low vehicle speed and slow steering at high vehicle speed,the automatic steering of agricultural chassis must control both the wheel steering angle and the steering angle’s angular speed.This study applied hydraulic steer-by-wire technology to the automatic steering control of agricultural chassis.First,the transmission mechanism of the designed steering system was optimized.According to the rule of least squares,aiming at the minimum sum of squares of errors between 10 ideal outer wheel angles and real outer wheel angles,the optimal solution of hole spacing on both sides of the steering hydraulic cylinder piston rod was 925 mm.The outer wheel angle error of the optimized steering mechanism throughout the steering stroke was less than 0.15°.Additionally,a hydraulic steer-by-wire system was developed,and the parameters of its critical components were calculated.Then,the compound control strategy of the steering cylinder piston rod displacement and moving speed was formulated for this automatic steering system.The entire control system included a valve control signal calculation model,an initial velocity calculation model,a correction velocity calculation model,and an attenuation velocity calculation model,and the formulae of each model were deduced.Based on the optimized parameters and the developed control strategy,a simulation model was built in AMESim,and simulation results showed that the proposed control strategy could achieve simultaneous controls of piston rod displacement and speed at different vehicle speeds and loads.The horizontal and vertical displacements of the right wheel center were plotted for typical vehicle speeds and steering commands.The results of this study provided a new idea for the application of hydraulic steer-by-wire technology in the automatic steering of agricultural chassis.展开更多
文摘The ongoing need for better fuel economy and lower exhaust pollution of vehicles has increased the employment of electric power steering(EPS)in automotives.Optimal design of EPS for a product family reduces the development and fabrication costs significantly.In this paper,the TOPSIS method along with the NSGA-Ⅱis employed to find an optimum family of EPS for an automotive platform.A multi-objective optimization problem is defined considering road feel,steering portability,RMS of Ackerman error,and product family penalty function(PFPF)as the conflicting objective functions.The results for the single objective optimization problems and the ones for the multi-objective optimization problem,as well as two suggested trade-off design points are presented,compared and discussed.For the two suggested points,performance at one objective function is deteriorated by about 1%,while the commonality is increased by 20%–40%,which shows the effectiveness of the proposed method in first finding the non-dominated design points and then selecting the trade-off among the obtained points.The results indicate that the obtained trade-off points have superior performance within the product family with maximum number of common parts.
基金financed with the means of Yingkou Institute of Technology Introduction of doctors to start the fund project (YJRC202109).
文摘For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing leading to transmission failure and other adverse effects,but in the gear optimization design and little consideration of thermal transmission errors and thermal resonance and other factors,while the conventional multi-objective optimization design methods are difficult to achieve the optimum of each objective.Based on this,the paper proposes a gear multi-objective reliability optimisation design method based on the APCK-SORA model.The PC-Kriging model and the adaptive k-means clustering method are combined to construct an adaptive reliability analysis method(APCK for short),which is then integrated with the SORA optimisation algorithm.The objective function is the lightweight of gear pair,the maximum overlap degree and the maximum anti-glue strength;the basic parameters of the gear and the sensitivity parameters affecting the thermal deformation and thermal resonance of the gear are used as design variables;the amount of thermal deformation and thermal resonance,as well as the contact strength of the tooth face and the bending strength of the tooth root are used as constraints;the optimisation results show that:the mass of the gear is reduced by 0.13kg,the degree of overlap is increased by 0.016 and the coefficient of safety against galling Compared with other methods,the proposed method is more efficient than the other methods in meeting the multi-objective reliability design requirements of lightweighting,ensuring smoothness and anti-galling capability of high-speed heavy-duty gears.
文摘Large torque can be output by the single gimbal control momentum gyroscope (SGCMG) based on the principle of the gyroscopic precession. However, the singularity is a major obstacle to successfully implement the task of the attitude control. The singularity can be avoided by the additional variable flywheel speed of variable speed control moment gyroscopes (VSCMG). Unfortunately, some kind of singularity cannot be effectively avoided. Consequently, the output toque can be only supported by the reaction torque of the flywheel when the singularity is encountered, and the consume power that is determined by the flywheel speed and reaction torque can be greatly increased when the flywheel spin rate over one thousand revolutions per minute. In this paper, the pyramid configuration with variable skew angle of the VSCMG is considered. A new steering law for the VSCMG with variable skew angle is proposed. The singularity that cannot be avoided by the varying flywheel speed can be effectively avoided with assisting of varying the skew angle. Consequently, the requirement of flywheel torque can be reduced. At last, the optimizing VSCMG with variable skew angle can be cast as a multi-objective function with multi-constraints. The particle swarm optimization method is used to solve the optimizing problem. In summary, the VSCMG with variable skew angle can be redesigned with considering of the singularity avoidance and minimizing system power.
基金supported by the National Natural Science Foundation of China(No.51605465)
文摘In this paper, in order to design a fast steering mirror(FSM) with large deflection angle and high linearity, a deflection angle detecting system(DADS) using quadrant detector(QD) is developed. And the mathematical model describing DADS is established by analyzing the principle of position detecting and error characteristics of QD. Based on this mathematical model, the variation tendencies of deflection angle and linearity of FSM are simulated. Then, by changing the parameters of the DADS, the optimization of deflection angle and linearity of FSM is demonstrated. Finally, a QD-based FSM is designed based on this method, which achieves ±2° deflection angle and 0.72% and 0.68% linearity along x and y axis, respectively. Moreover, this method will be beneficial to the design of large deflection angle and high linearity FSM.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51005115, 51205191, and 51005248)the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University+1 种基金the Research Foundation of National Engineering Laboratory for Electric Vehicles (Grant No. 2012-NELEV-03)the Science Fund of State Key Laboratory of Automotive Safety and Energy(Grant No. KF11202)
文摘Based on the multidiscipline design optimization theory, a multidiscipline collaborative optimization model of the differential steering system of electric vehicle with motorized wheels is built, with the steering economy as the main system and the steering road feel, the steering flexibility and the mechanic character of the steering sensors as the subsystems. Considering the coupled relationship of each discipline, the main system is optimized by the multi-island algorithm and the subsystems are optimized by the sequential quadratic programming algorithm. The simulation results show that the steering economy can be optimized by the collaborative optimization, and that the system can get good steering road feel, good steering flexibility and good mechanic character of the steering sensors.
基金the State Key Research Program of China(Grant No.2021YFD2000105)the Scientific Research and Agricultural Technology Promotion Project of Guangdong Provincial Department of Agriculture and Rural Affairs(Grant No.2021125).
文摘To meet the requirements of fast steering at low vehicle speed and slow steering at high vehicle speed,the automatic steering of agricultural chassis must control both the wheel steering angle and the steering angle’s angular speed.This study applied hydraulic steer-by-wire technology to the automatic steering control of agricultural chassis.First,the transmission mechanism of the designed steering system was optimized.According to the rule of least squares,aiming at the minimum sum of squares of errors between 10 ideal outer wheel angles and real outer wheel angles,the optimal solution of hole spacing on both sides of the steering hydraulic cylinder piston rod was 925 mm.The outer wheel angle error of the optimized steering mechanism throughout the steering stroke was less than 0.15°.Additionally,a hydraulic steer-by-wire system was developed,and the parameters of its critical components were calculated.Then,the compound control strategy of the steering cylinder piston rod displacement and moving speed was formulated for this automatic steering system.The entire control system included a valve control signal calculation model,an initial velocity calculation model,a correction velocity calculation model,and an attenuation velocity calculation model,and the formulae of each model were deduced.Based on the optimized parameters and the developed control strategy,a simulation model was built in AMESim,and simulation results showed that the proposed control strategy could achieve simultaneous controls of piston rod displacement and speed at different vehicle speeds and loads.The horizontal and vertical displacements of the right wheel center were plotted for typical vehicle speeds and steering commands.The results of this study provided a new idea for the application of hydraulic steer-by-wire technology in the automatic steering of agricultural chassis.