期刊文献+
共找到100,355篇文章
< 1 2 250 >
每页显示 20 50 100
Low-Cost Federated Broad Learning for Privacy-Preserved Knowledge Sharing in the RIS-Aided Internet of Vehicles 被引量:1
1
作者 Xiaoming Yuan Jiahui Chen +4 位作者 Ning Zhang Qiang(John)Ye Changle Li Chunsheng Zhu Xuemin Sherman Shen 《Engineering》 SCIE EI CAS CSCD 2024年第2期178-189,共12页
High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency... High-efficiency and low-cost knowledge sharing can improve the decision-making ability of autonomous vehicles by mining knowledge from the Internet of Vehicles(IoVs).However,it is challenging to ensure high efficiency of local data learning models while preventing privacy leakage in a high mobility environment.In order to protect data privacy and improve data learning efficiency in knowledge sharing,we propose an asynchronous federated broad learning(FBL)framework that integrates broad learning(BL)into federated learning(FL).In FBL,we design a broad fully connected model(BFCM)as a local model for training client data.To enhance the wireless channel quality for knowledge sharing and reduce the communication and computation cost of participating clients,we construct a joint resource allocation and reconfigurable intelligent surface(RIS)configuration optimization framework for FBL.The problem is decoupled into two convex subproblems.Aiming to improve the resource scheduling efficiency in FBL,a double Davidon–Fletcher–Powell(DDFP)algorithm is presented to solve the time slot allocation and RIS configuration problem.Based on the results of resource scheduling,we design a reward-allocation algorithm based on federated incentive learning(FIL)in FBL to compensate clients for their costs.The simulation results show that the proposed FBL framework achieves better performance than the comparison models in terms of efficiency,accuracy,and cost for knowledge sharing in the IoV. 展开更多
关键词 Knowledge sharing Internet of vehicles Federated learning Broad learning Reconfigurable intelligent surfaces Resource allocation
下载PDF
Path-Following Control With Obstacle Avoidance of Autonomous Surface Vehicles Subject to Actuator Faults 被引量:1
2
作者 Li-Ying Hao Gege Dong +1 位作者 Tieshan Li Zhouhua Peng 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期956-964,共9页
This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in... This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method. 展开更多
关键词 Actuator faults autonomous surface vehicle(ASVs) improved artificial potential function nonlinear state observer obstacle avoidance
下载PDF
Integrated Active Suspension and Anti-Lock Braking Control for Four-Wheel-Independent-Drive Electric Vehicles
3
作者 Ze Zhao Lei Zhang +3 位作者 Xiaoling Ding Zhiqiang Zhang Shaohua Li Liang Gu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期87-98,共12页
This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and ... This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods. 展开更多
关键词 Four-wheel-independent-drive electric vehicles Active suspension system(ASS) Anti-lock braking system(ABS) Vertical-longitudinal vehicle dynamics
下载PDF
The Future Trend of E-Mobility in Terms of Battery Electric Vehicles and Their Impact on Climate Change: A Case Study Applied in Hungary
4
作者 Mohamad Ali Saleh Saleh 《American Journal of Climate Change》 2024年第2期83-102,共20页
The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term ... The transportation sector is responsible for 25% of the total Carbon dioxide (CO2) emissions, whereas 60.6% of this sector represents small and medium passenger cars. However, as noted by the European Union Long-term strategy, there are two ways to reduce the amount of CO2 emissions in the transportation sector. The first way is characterized by creating more efficient vehicles. In contrast, the second way is characterized by changing the fuel used. The current study addressed the second way, changing the fuel type. The study examined the potential of battery electric vehicles (BEVs) as an alternative fuel type to reduce CO2 emissions in Hungarys transportation sector. The study used secondary data retrieved from Statista and stata.com to analyze the future trends of BEVs in Hungary. The results showed that the percentage of BEVs in Hungary in 2022 was 0.4% compared to the total number of registered passenger cars, which is 3.8 million. The simple exponential smoothing (SES) time series forecast revealed that the number of BEVs is expected to reach 84,192 in 2030, indicating a percentage increase of 2.21% in the next eight years. The study suggests that increasing the number of BEVs is necessary to address the negative impact of CO2 emissions on society. The Hungarian Ministry of Innovation and Technologys strategy to reduce the cost of BEVs may increase the percentage of BEVs by 10%, resulting in a potential average reduction of 76,957,600 g/km of CO2 compared to gasoline, diesel, hybrid electric vehicles (HEVs), and plug-in hybrid vehicles (PHEVs). 展开更多
关键词 Battery Electric vehicles (BEVS) GASOLINE DIESEL Hybrid Electric vehicles (HEVs) Plug-In Hybrid vehicles (PHEVs) Climate Change Carbon Dioxide (CO2) Emissions
下载PDF
A blockchain based privacy-preserving federated learning scheme for Internet of Vehicles
5
作者 Naiyu Wang Wenti Yang +4 位作者 Xiaodong Wang Longfei Wu Zhitao Guan Xiaojiang Du Mohsen Guizani 《Digital Communications and Networks》 SCIE CSCD 2024年第1期126-134,共9页
The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have be... The application of artificial intelligence technology in Internet of Vehicles(lov)has attracted great research interests with the goal of enabling smart transportation and traffic management.Meanwhile,concerns have been raised over the security and privacy of the tons of traffic and vehicle data.In this regard,Federated Learning(FL)with privacy protection features is considered a highly promising solution.However,in the FL process,the server side may take advantage of its dominant role in model aggregation to steal sensitive information of users,while the client side may also upload malicious data to compromise the training of the global model.Most existing privacy-preserving FL schemes in IoV fail to deal with threats from both of these two sides at the same time.In this paper,we propose a Blockchain based Privacy-preserving Federated Learning scheme named BPFL,which uses blockchain as the underlying distributed framework of FL.We improve the Multi-Krum technology and combine it with the homomorphic encryption to achieve ciphertext-level model aggregation and model filtering,which can enable the verifiability of the local models while achieving privacy-preservation.Additionally,we develop a reputation-based incentive mechanism to encourage users in IoV to actively participate in the federated learning and to practice honesty.The security analysis and performance evaluations are conducted to show that the proposed scheme can meet the security requirements and improve the performance of the FL model. 展开更多
关键词 Federated learning Blockchain Privacy-preservation Homomorphic encryption Internetof vehicles
下载PDF
A Blockchain-Based Efficient Cross-Domain Authentication Scheme for Internet of Vehicles
6
作者 Feng Zhao Hongtao Ding +3 位作者 Chunhai Li Zhaoyu Su Guoling Liang Changsong Yang 《Computers, Materials & Continua》 SCIE EI 2024年第7期567-585,共19页
The Internet of Vehicles(IoV)is extensively deployed in outdoor and open environments to effectively address traffic efficiency and safety issues by connecting vehicles to the network.However,due to the open and varia... The Internet of Vehicles(IoV)is extensively deployed in outdoor and open environments to effectively address traffic efficiency and safety issues by connecting vehicles to the network.However,due to the open and variable nature of its network topology,vehicles frequently engage in cross-domain interactions.During such processes,directly uploading sensitive information to roadside units for interaction may expose it to malicious tampering or interception by attackers,thus compromising the security of the cross-domain authentication process.Additionally,IoV imposes high real-time requirements,and existing cross-domain authentication schemes for IoV often encounter efficiency issues.To mitigate these challenges,we propose CAIoV,a blockchain-based efficient cross-domain authentication scheme for IoV.This scheme comprehensively integrates technologies such as zero-knowledge proofs,smart contracts,and Merkle hash tree structures.It divides the cross-domain process into anonymous cross-domain authentication and safe cross-domain authentication phases to ensure efficiency while maintaining a balance between efficiency and security.Finally,we evaluate the performance of CAIoV.Experimental results demonstrate that our proposed scheme reduces computational overhead by approximately 20%,communication overhead by around 10%,and storage overhead by nearly 30%. 展开更多
关键词 Blockchain cross-domain authentication internet of vehicle zero-knowledge proof
下载PDF
Analysis for Effects of Temperature Rise of PV Modules upon Driving Distance of Vehicle Integrated Photovoltaic Electric Vehicles
7
作者 Masafumi Yamaguchi Yasuyuki Ota +18 位作者 Taizo Masuda Christian Thiel Anastasios Tsakalidis Arnulf Jaeger-Waldau Kenji Araki Kensuke Nishioka Tatsuya Takamoto Takashi Nakado Kazumi Yamada Tsutomu Tanimoto Yosuke Tomita Yusuke Zushi Kenichi Okumura Takashi Mabuchi Akinori Satou Kyotaro Nakamura Ryo Ozaki Nobuaki Kojima Yoshio Ohshita 《Energy and Power Engineering》 2024年第4期131-150,共20页
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ... The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV. 展开更多
关键词 vehicle Integrated Photovoltaics (VIPV) VIPV-Powered Electric vehicles Driving Distance PV Modules Solar Irradiation Temperature Rise Radiative Cooling
下载PDF
Survey on digital twins for Internet of Vehicles:Fundamentals,challenges,and opportunities
8
作者 Jiajie Guo Muhammad Bilal +3 位作者 Yuying Qiu Cheng Qian Xiaolong Xu Kim-Kwang Raymond Choo 《Digital Communications and Networks》 SCIE CSCD 2024年第2期237-247,共11页
As autonomous vehicles and the other supporting infrastructures(e.g.,smart cities and intelligent transportation systems)become more commonplace,the Internet of Vehicles(IoV)is getting increasingly prevalent.There hav... As autonomous vehicles and the other supporting infrastructures(e.g.,smart cities and intelligent transportation systems)become more commonplace,the Internet of Vehicles(IoV)is getting increasingly prevalent.There have been attempts to utilize Digital Twins(DTs)to facilitate the design,evaluation,and deployment of IoV-based systems,for example by supporting high-fidelity modeling,real-time monitoring,and advanced predictive capabilities.However,the literature review undertaken in this paper suggests that integrating DTs into IoV-based system design and deployment remains an understudied topic.In addition,this paper explains how DTs can benefit IoV system designers and implementers,as well as describes several challenges and opportunities for future researchers. 展开更多
关键词 Internet of vehicles Digital twin Simulation Traffic systems
下载PDF
Toward Trustworthy Decision-Making for Autonomous Vehicles:A Robust Reinforcement Learning Approach with Safety Guarantees
9
作者 Xiangkun He Wenhui Huang Chen Lv 《Engineering》 SCIE EI CAS CSCD 2024年第2期77-89,共13页
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present... While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies. 展开更多
关键词 Autonomous vehicle DECISION-MAKING Reinforcement learning Adversarial attack Safety guarantee
下载PDF
Multi-circular formation control with reinforced transient profiles for nonholonomic vehicles:A path-following framework
10
作者 Jintao Zhang Xingling Shao +1 位作者 Wendong Zhang Zongyu Zuo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期278-287,共10页
This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the fe... This article investigates a multi-circular path-following formation control with reinforced transient profiles for nonholonomic vehicles connected by a digraph.A multi-circular formation controller endowed with the feature of spatial-temporal decoupling is devised for a group of vehicles guided by a virtual leader evolving along an implicit path,which allows for a circumnavigation on multiple circles with an anticipant angular spacing.In addition,notice that it typically imposes a stringent time constraint on time-sensitive enclosing scenarios,hence an improved prescribed performance control(IPPC)using novel tighter behavior boundaries is presented to enhance transient capabilities with an ensured appointed-time convergence free from any overshoots.The significant merits are that coordinated circumnavigation along different circles can be realized via executing geometric and dynamic assignments independently with modified transient profiles.Furthermore,all variables existing in the entire system are analyzed to be convergent.Simulation and experimental results are provided to validate the utility of suggested solution. 展开更多
关键词 Multi-circular formation Reinforced transient profiles Nonholonomic vehicles Path following
下载PDF
General Optimal Trajectory Planning:Enabling Autonomous Vehicles with the Principle of Least Action
11
作者 Heye Huang Yicong Liu +4 位作者 Jinxin Liu Qisong Yang Jianqiang Wang David Abbink Arkady Zgonnikov 《Engineering》 SCIE EI CAS CSCD 2024年第2期63-76,共14页
This study presents a general optimal trajectory planning(GOTP)framework for autonomous vehicles(AVs)that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently.Firstly,we emplo... This study presents a general optimal trajectory planning(GOTP)framework for autonomous vehicles(AVs)that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently.Firstly,we employ the fifth-order Bezier curve to generate and smooth the reference path along the road centerline.Cartesian coordinates are then transformed to achieve the curvature continuity of the generated curve.Considering the road constraints and vehicle dynamics,limited polynomial candidate trajectories are generated and smoothed in a curvilinear coordinate system.Furthermore,in selecting the optimal trajectory,we develop a unified and auto-tune objective function based on the principle of least action by employing AVs to simulate drivers’behavior and summarizing their manipulation characteristics of“seeking benefits and avoiding losses.”Finally,by integrating the idea of receding-horizon optimization,the proposed framework is achieved by considering dynamic multi-performance objectives and selecting trajectories that satisfy feasibility,optimality,and adaptability.Extensive simulations and experiments are performed,and the results demonstrate the framework’s feasibility and effectiveness,which avoids both dynamic and static obstacles and applies to various scenarios with multi-source interactive traffic participants.Moreover,we prove that the proposed method can guarantee real-time planning and safety requirements compared to drivers’manipulation. 展开更多
关键词 Autonomous vehicle Trajectory planning Multi-performance objectives Principle of least action
下载PDF
Stability-Considered Lane Keeping Control of Commercial Vehicles Based on Improved APF Algorithm
12
作者 Bin Tang Zhengyi Yang +3 位作者 Haobin Jiang Ziyan Lin Zhanxiang Xu Zitian Hu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期114-129,共16页
Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase... Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase and higher mass center.To improve the performance mentioned above comprehensively,the control strategy based on improved artificial potential field(APF)algorithm is proposed.In the paper,time to lane crossing(TLC)is introduced into the potential field function to enhance the accuracy of path tracking,meanwhile the vehicle dynamics parameters including yaw rate and lateral acceleration are chosen as the repulsive force field source.The lane keeping controller based on improved APF algorithm is designed and the stability of the control system is proved based on Lyapunov theory.In addition,adaptive inertial weight particle swarm optimization algorithm(AIWPSO)is applied to optimize the gain of each potential field function.The co-simulation results indicate that the comprehensive evaluation index respecting lane tracking accuracy and lateral stability is reduced remarkably.Finally,the proposed control strategy is verified by the HiL test.It provides a beneficial reference for dynamics control of commercial vehicles and enriches the theoretical development and practical application of artificial potential field method in the field of intelligent driving. 展开更多
关键词 Lane keeping control Commercial vehicles Lateral stability Artificial potential field AIWPSO
下载PDF
Advances in Active Suspension Systems for Road Vehicles
13
作者 Min Yu Simos AEvangelou Daniele Dini 《Engineering》 SCIE EI CAS CSCD 2024年第2期160-177,共18页
Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and... Active suspension systems(ASSs)have been proposed and developed for a few decades,and have now once again become a thriving topic in both academia and industry,due to the high demand for driving comfort and safety and the compatibility of ASSs with vehicle electrification and autonomy.Existing review papers on ASSs mainly cover dynamics modeling and robust control;however,the gap between academic research outcomes and industrial application requirements has not yet been bridged,hindering most ASS research knowledge from being transferred to vehicle companies.This paper comprehensively reviews advances in ASSs for road vehicles,with a focus on hardware structures and control strategies.In particular,state-of-the-art ASSs that have been recently adopted in production cars are discussed in detail,including the representative solutions of Mercedes active body control(ABC)and Audi predictive active suspension;novel concepts that could become alternative candidates are also introduced,including series active variable geometry suspension,and the active wheel-alignment system.ASSs with compact structure,small mass increment,low power consumption,high-frequency response,acceptable economic costs,and high reliability are more likely to be adopted by car manufacturers.In terms of control strategies,the development of future ASSs aims not only to stabilize the chassis attitude and attenuate the chassis vibration,but also to enable ASSs to cooperate with other modules(e.g.,steering and braking)and sensors(e.g.,cameras)within a car,and even with high-level decision-making(e.g.,reference driving speed)in the overall transportation system-strategies that will be compatible with the rapidly developing electric and autonomous vehicles. 展开更多
关键词 Active suspension vehicle dynamics Robust control Ride comfort Chassis attitude
下载PDF
Safe Motion Planning and Control Framework for Automated Vehicles with Zonotopic TRMPC
14
作者 Hao Zheng Yinong Li +1 位作者 Ling Zheng Ehsan Hashemi 《Engineering》 SCIE EI CAS CSCD 2024年第2期146-159,共14页
Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal ... Model mismatches can cause multi-dimensional uncertainties for the receding horizon control strategies of automated vehicles(AVs).The uncertainties may lead to potentially hazardous behaviors when the AV tracks ideal trajectories that are individually optimized by the AV's planning layer.To address this issue,this study proposes a safe motion planning and control(SMPAC)framework for AVs.For the control layer,a dynamic model including multi-dimensional uncertainties is established.A zonotopic tube-based robust model predictive control scheme is proposed to constrain the uncertain system in a bounded minimum robust positive invariant set.A flexible tube with varying cross-sections is constructed to reduce the controller conservatism.For the planning layer,a concept of safety sets,representing the geometric boundaries of the ego vehicle and obstacles under uncertainties,is proposed.The safety sets provide the basis for the subsequent evaluation and ranking of the generated trajectories.An efficient collision avoidance algorithm decides the desired trajectory through the intersection detection of the safety sets between the ego vehicle and obstacles.A numerical simulation and hardware-in-the-loop experiment validate the effectiveness and real-time performance of the SMPAC.The result of two driving scenarios indicates that the SMPAC can guarantee the safety of automated driving under multi-dimensional uncertainties. 展开更多
关键词 Automated vehicles Automated driving Motion planning Motion control Tube MPC ZONOTOPE
下载PDF
Ballistic design and testing of a composite armour reinforced by CNTs suitable for armoured vehicles
15
作者 Evangelos Ch.Tsirogiannis Evangelos Daskalakis +2 位作者 Mohamed H.Hassan Abdalla M.Omar Paulo Bartolo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期173-195,共23页
This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite mate... This paper is investigating the use of composite armour reinforced by nanomaterials, for the protection of light armoured(LAV) and medium armoured military vehicles(MAV), and the interaction between the composite materials and high-performance ballistic projectiles. Four armour materials, consisted of front hybrid fibre reinforced polymer cover layer, ceramic strike-face, fibre reinforced polymer intermediate layer and the metal matrix composite reinforced backplate, were manufactured and assembled by adhesive technology. The proposed laminated protection system is suitable for armoured ground vehicles;however, it could be used as armour on ground, air and naval platforms. The design of the protection system, including material selection and thickness, was elaborated depending on the performance requirements of Level 4 + STANAG 4569 military standard(projectile 14.5 mm × 114 mm API B32) and especially on a design philosophy which is analysed with the specifications. The backplate of this new composite is a hybrid material of Metal Matrix Composite(MMC) reinforced with carbon nanotubes(CNTs), manufactured with the use of powder metallurgy technique. The composite backplate material was morphologically, mechanically and chemically analysed. Results show that all plates are presenting high mechanical properties and ballistic characteristics, compared to commonly used armour plates. Real military ballistic tests according to AEP-STANAG 4569 were carried out for the total composite armour systems. After the ballistic tests, AA2024-CNT3 showed the best protection results, compared with the other plates(AA2024-CNT1 and AA2024-CNT2), with the projectile being unable to fully penetrate the composite plate. 展开更多
关键词 Passive armour protection Protective armour Ballistic performance Hybrid composites vehicle protection
下载PDF
A Survey on an Emerging Safety Challenge for Autonomous Vehicles:Safety of the Intended Functionality
16
作者 Hong Wang Wenbo Shao +3 位作者 Chen Sun Kai Yang Dongpu Cao Jun Li 《Engineering》 SCIE EI CAS CSCD 2024年第2期17-34,共18页
As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(S... As the complexity of autonomous vehicles(AVs)continues to increase and artificial intelligence algorithms are becoming increasingly ubiquitous,a novel safety concern known as the safety of the intended functionality(SOTIF)has emerged,presenting significant challenges to the widespread deployment of AVs.SOTIF focuses on issues arising from the functional insufficiencies of the AVs’intended functionality or its implementation,apart from conventional safety considerations.From the systems engineering standpoint,this study offers a comprehensive exploration of the SOTIF landscape by reviewing academic research,practical activities,challenges,and perspectives across the development,verification,validation,and operation phases.Academic research encompasses system-level SOTIF studies and algorithm-related SOTIF issues and solutions.Moreover,it encapsulates practical SOTIF activities undertaken by corporations,government entities,and academic institutions spanning international and Chinese contexts,focusing on the overarching methodologies and practices in different phases.Finally,the paper presents future challenges and outlook pertaining to the development,verification,validation,and operation phases,motivating stakeholders to address the remaining obstacles and challenges. 展开更多
关键词 Safety of the intended functionality Autonomous vehicles Artificial intelligence UNCERTAINTY Verification Validation
下载PDF
A Novel Prescribed-Performance Path-Following Problem for Non-Holonomic Vehicles
17
作者 Zirui Chen Jingchuan Tang Zongyu Zuo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1476-1484,共9页
The issue of achieving prescribed-performance path following in robotics is addressed in this paper,where the aim is to ensure that a desired path within a specified region is accu-rately converged to by the controlle... The issue of achieving prescribed-performance path following in robotics is addressed in this paper,where the aim is to ensure that a desired path within a specified region is accu-rately converged to by the controlled vehicle.In this context,a novel form of the prescribed performance guiding vector field is introduced,accompanied by a prescribed-time sliding mode con-trol approach.Furthermore,the interdependence among the pre-scribed parameters is discussed.To validate the effectiveness of the proposed method,numerical simulations are presented to demonstrate the efficacy of the approach. 展开更多
关键词 Guiding vector field non-holonomic vehicle path following prescribed performance sliding mode control
下载PDF
3D Road Network Modeling and Road Structure Recognition in Internet of Vehicles
18
作者 Dun Cao Jia Ru +3 位作者 Jian Qin Amr Tolba Jin Wang Min Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1365-1384,共20页
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp... Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety. 展开更多
关键词 Internet of vehicles road networks 3D road model structure recognition GIS
下载PDF
Ensuring Secure Platooning of Constrained Intelligent and Connected Vehicles Against Byzantine Attacks:A Distributed MPC Framework
19
作者 Henglai Wei Hui Zhang +1 位作者 Kamal AI-Haddad Yang Shi 《Engineering》 SCIE EI CAS CSCD 2024年第2期35-46,共12页
This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram... This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings. 展开更多
关键词 Model predictive control Resilient control Platoon control Intelligent and connected vehicle Byzantine attacks
下载PDF
Optimization of Engine Control Strategies for Low Fuel Consumption in Heavy-Duty Commercial Vehicles
20
作者 Shuilong He Yang Liu +3 位作者 Shanchao Wang Liangying Hu Fei Xiao Chao Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2693-2714,共22页
The reduction of fuel consumption in engines is always considered of vital importance.Along these lines,in this work,this goal was attained by optimizing the heavy-duty commercial vehicle engine control strategy.More ... The reduction of fuel consumption in engines is always considered of vital importance.Along these lines,in this work,this goal was attained by optimizing the heavy-duty commercial vehicle engine control strategy.More specifically,at first,a general first principles model for heavy-duty commercial vehicles and a transient fuel consumptionmodel for heavy-duty commercial vehicles were developed and the parameters were adjusted to fit the empirical data.The accuracy of the proposed modelwas demonstrated fromthe stage and the final results.Next,the control optimization problem resulting in low fuel consumption in heavy commercial vehicles was described,with minimal fuel usage as the optimization goal and throttle opening as the control variable.Then,a time-continuous engine management approach was assessed.Next,the factors that influence low fuel consumption in heavy-duty commercial vehicles were systematically examined.To reduce the computing complexity,the control strategies related to the time constraints of the engine were parametrized using three different methods.The most effective solution was obtained by applying a global optimization strategy because the constrained optimization problem was nonlinear.Finally,the effectiveness of the low-fuel consumption engine control strategy was demonstrated by comparing the simulated and field test results. 展开更多
关键词 Fuel consumption heavy-duty commercial vehicle engine control optimal control
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部