The single event effect in ferroelectric-gate field-effect transistor (FeFET) under heavy ion irradiation is investigated in this paper. The simulation results show that the transient responses are much lower in a F...The single event effect in ferroelectric-gate field-effect transistor (FeFET) under heavy ion irradiation is investigated in this paper. The simulation results show that the transient responses are much lower in a FeFET than in a conventional metal-oxide-semiconductor field-effect transistor (MOSFET) when the ion strikes the channel. The main reason is that the polarization-induced charges (the polarization direction here is away from the silicon surface) bring a negative surface po- tential which will affect the distribution of carders and charge collection in different electrodes significantly. The simulation results are expected to explain that the FeFET has a relatively good immunity to single event effect.展开更多
The world is facing severe challenges of sustainable development, which requires the joint effort of the globalscience community to solve. As China continues to grow at a very impressive pace, the state appears acutel...The world is facing severe challenges of sustainable development, which requires the joint effort of the globalscience community to solve. As China continues to grow at a very impressive pace, the state appears acutely awareof the need to expand the Chinese science and technology portfolio to help fuel its growth and keep it sustainable.China also needs to continue on the path to innovations and modernization, focusing on endogenous growth torealize full, coordinated, and sustainable development.展开更多
Heavy-ion irradiation is commonly used to study radiation damage of high level radioactive waste (HLW) forms, but S ion was never used before. In this investigation, 100 MeV 32S ions produced by tandem accelerator was...Heavy-ion irradiation is commonly used to study radiation damage of high level radioactive waste (HLW) forms, but S ion was never used before. In this investigation, 100 MeV 32S ions produced by tandem accelerator was used to study radiation effects on pyrochlore-rich synroc which contained simulated actinides. The amorphization and amorphous doses were determined by X-ray diffractometer (XRD) and transmission electron microscopy /select area electron diffraction (TEM/SAED). The vacancy defects induced by heavy-ion irradiation were characterized by using positron annihilation technique (PAT). The experimental results show that the amorphous dose is 0.5 dpa, the defects produced by heavy-ion irradiation are mainly voids, and irradiation could continue to intensify the vacancy defects even after the amorphous dose was reached.展开更多
Radio genetic therapy which combines gene therapy with radiotherapy has shown promising results in cancer treatment. In this study, an oncolytic adenovirusbased gene therapy system regulated by radiation was construct...Radio genetic therapy which combines gene therapy with radiotherapy has shown promising results in cancer treatment. In this study, an oncolytic adenovirusbased gene therapy system regulated by radiation was constructed to improve the cancer curative effect. This gene therapy system incorporated the radiation-inducible early growth response gene(Egr-1) promoter and the anticancer gene tumor necrosis factor-related apoptosis-inducing ligand(TRAIL). To confirm the antitumor effect of Ad-ET combined with^12C^(6+)tion irradiation, the survival and apoptosis fraction of tumor cells HT1080 and normal cells MRC-5 in combination treatment were detected by CCK-8 assay and FACS analysis. Then the expression levels of TRAIL gene and protein were tested by real-time PCR and western blotting. The results show that^12C^(6+)tion irradiation could induce cell growth inhibition and apoptosis by activating the TRAIL gene expression in tumor cells, while exhibiting no obvious toxicity to the normal lung cell line MRC-5. Theresults also demonstrate that use of an oncolytic adenovirusbased radiation-inducible gene therapy system together with^12C^(6+)tion irradiation could cause synergistic antitumor effect specifically in tumor cells but not in normal cells. The results indicate that the novel radio genetic therapy could potentiate radiation treatment by improving the safety and efficiency of monotherapy, and provide theoretical support for clinical application of combination treatment.展开更多
The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fou...The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors.展开更多
Because of their economy and applicability,high-power thyristor devices are widely used in the power supply systems for large fusion devices.When high-dose neutrons produced by deuterium–tritium(D–T)fusion reactions...Because of their economy and applicability,high-power thyristor devices are widely used in the power supply systems for large fusion devices.When high-dose neutrons produced by deuterium–tritium(D–T)fusion reactions are irradiated on a thyristor device for a long time,the electrical characteristics of the device change,which may eventually cause irreversible damage.In this study,with the thyristor switch of the commutation circuit in the quench protection system(QPS)of a fusion device as the study object,the relationship between the internal physical structure and external electrical parameters of the irradiated thyristor is established.Subsequently,a series of targeted thyristor physical simulations and neutron irradiation experiments are conducted to verify the accuracy of the theoretical analysis.In addition,the effect of irradiated thyristor electrical characteristic changes on the entire QPS is studied by accurate simulation,providing valuable guidelines for the maintenance and renovation of the QPS.展开更多
4H silicon carbide(4H-SiC)has gained a great success in high-power electronics,owing to its advantages of wide bandgap,high breakdown electric field strength,high carrier mobility,and high thermal conductivity.Conside...4H silicon carbide(4H-SiC)has gained a great success in high-power electronics,owing to its advantages of wide bandgap,high breakdown electric field strength,high carrier mobility,and high thermal conductivity.Considering the high carrier mobility and high stability of 4H-SiC,4H-SiC has great potential in the field of photoelectrochemical(PEC)water splitting.In this work,we demonstrate the irradiation-resistant PEC water splitting based on nanoporous 4H-SiC arrays.A new two-step anodizing approach is adopted to prepare 4H-SiC nanoporous arrays with different porosity,that is,a constant low-voltage etching followed by a pulsed high-voltage etching.The constant-voltage etching and pulsed-voltage etching are adopted to control the diameter of the nanopores and the depth of the nanoporous arrays,respectively.It is found that the nanoporous arrays with medium porosity has the highest PEC current,because of the enhanced light absorption and the optimized transportation of charge carriers along the walls of the nanoporous arrays.The performance of the PEC water splitting of the nanoporous arrays is stable after the electron irradiation with the dose of 800 and 1600 k Gy,which indicates that 4H-SiC nanoporous arrays has great potential in the PEC water splitting under harsh environments.展开更多
In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after...In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.展开更多
In order to comprehend the applicability of microwave irradiation for recovering coalbed methane,it is necessary to evaluate the microwave irradiation-induced alterations in coals with varying levels of metamorphism.I...In order to comprehend the applicability of microwave irradiation for recovering coalbed methane,it is necessary to evaluate the microwave irradiation-induced alterations in coals with varying levels of metamorphism.In this work,the carbon molecular sieve combined with KMnO_(4)oxidation was selected to fabricate carbon molecular sieve with diverse oxidation degrees,which can serve as model substances toward coals.Afterwards,the microwave irradiation dependences of pores,functional groups,and highpressure methane adsorption characteristics of model substances were studied.The results indicated that microwave irradiation causes rearrangement of oxygen-containing functional groups,which could block the micropores with a size of 0.40-0.60 nm in carbon molecular sieve;meanwhile,naphthalene and phenanthrene generated by macro-molecular structure pyrolysis due to microwave irradiation could block the micropores with a size of 0.70-0.90 nm.These alterations in micropore structure weaken the saturated methane adsorption capacity of oxidized carbon molecular sieve by 2.91%-23.28%,suggesting that microwave irradiation could promote methane desorption.Moreover,the increased mesopores found for oxidized carbon molecular sieve after microwave irradiation could benefit CH4 diffusion.In summary,the oxidized carbon molecular sieve can act as model substances toward coals with different ranks.Additionally,microwave irradiation is a promising technology to enhance coalbed methane recovery.展开更多
Space objects such as spacecraft or missiles may be exposed to intense X-rays in outer space,leading to severe damage.The reinforcement of these objects to reduce the damage caused by X-ray irradiation is a significan...Space objects such as spacecraft or missiles may be exposed to intense X-rays in outer space,leading to severe damage.The reinforcement of these objects to reduce the damage caused by X-ray irradiation is a significant concern.The blow-off impulse(BOI)is a crucial physical quantity for investigating material damage induced by X-ray irradiation.However,the accurate calculation of BOI is challenging,particularly for large deformations of materials with complex configurations.In this study,we develop a novel two-dimensional particle-in-cell code,Xablation2D,to calculate BOIs under far-field X-ray irradiation.This significantly reduces the dependence of the numerical simulation on the grid shape.The reliability of this code is verified by simulation results from open-source codes,and the calculated BOIs are consistent with the experimental and analytical results.展开更多
In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed t...In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed that with the irradiation dose increased,the tensile micro-strain increased,nano-hardness increased from 7.11 GPa to 7.90 GPa and 8.62 GPa,Young’s modulus increased,and H3/E2 increased which indicating that the plastic deformability decreased in crystalline W.Under the same irradiation conditions,the Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG still maintained the amorphous structure and became more disordered despite the longer range and stronger displacement damage of Ne ions in Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG than in crystalline W.Unlike the irradiation hardening and embrittlement behavior of crystalline W,Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG showed the gradual decrease in hardness from 6.02 GPa to 5.89 GPa and 5.50 GPa,the decrease in modulus and the increase in plastic deformability with the increasing dose.Possibly,the irradiation softening and toughening phenomenon of Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG could provide new ideas for the design of nuclear materials.展开更多
BACKGROUND Lumbar radiculopathy spondylosis is a relatively common orthopedic disease with a high incidence rate.It most commonly occurs in the lumbar 4-5 and lumbar 5-sacral 1 vertebrae,which account for approximatel...BACKGROUND Lumbar radiculopathy spondylosis is a relatively common orthopedic disease with a high incidence rate.It most commonly occurs in the lumbar 4-5 and lumbar 5-sacral 1 vertebrae,which account for approximately 95%of cases.It mostly occurs in people aged 30-50 years old and greatly affects their quality of life.AIM To determine the effect of triple-voltage acupuncture combined with helium-neon laser irradiation on the quality of care and improvement of symptoms in patients with lumbar radiculopathy spondylolisthesis.METHODS In this study,we selected 120 patients with lumbar radiculopathy spondylosis who were treated at our hospital between June 2019 to June 2020.The patients were divided into control and observation groups according to the random number table method,with 60 patients in each group.Patients in the observation group were treated with three-volt moxibustion combined with helium-neon laser irradiation,and those in the control group were treated with lumbar traction.After 1 month of treatment,the lumbar pain scores,lumbar spine motor functions,clinical treatment effects,and nursing satisfaction of the two groups were compared.RESULTS The results showed that acupuncture combined with laser irradiation significantly improved the patients'clinical symptoms,i.e.,reduced their low back pain,significantly lower numerical rating scale pain scores in the observation group than in the control group,and better lumbar spine motility than in the control group,compared to lumbar traction.In addition,they were cared for.The treatment effectiveness rate of the observation group was 95.5%,which was significantly higher than that of the control group(81.67%).Satisfaction with care was higher than 90 points in both groups,but the difference was not statistically significant.CONCLUSION Our study provides a clinical rationale for the future treatment of patients with lumbar spine disease.However,further extensive research is needed for validation.展开更多
Background:In order to clarify the inmpat ofγirradiation on the chemical composition of traditional Chinese medicine,this paper carefully choosed Chuanxiong Rhizoma to carry on a demonstration study.Methods:Through a...Background:In order to clarify the inmpat ofγirradiation on the chemical composition of traditional Chinese medicine,this paper carefully choosed Chuanxiong Rhizoma to carry on a demonstration study.Methods:Through a meticulous assessment,a comprehensive comparison was made between the irradiated and unirradiated Chuanxiong Rhizoma samples.The property characteristics were investigated by colorimeter and electronic nose.The changes in chemical structures and contents was analyzed by fourier infrared spectroscopy,high performance liquid chromatography and fingerprinting.In a quest to uncover the presence of any new radiolysis products,cutting-edge techniques like ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry and gas chromatography-mass spectrometry were employed.Moreover,the difference of antioxidant activity were investigated.Results:The irradiation doses within 12 kGy had no significant effects on the content of the main chemical components,characteristics and in vitro antioxidant activity of Chuanxiong Rhizoma,while changes in some functional groups and degradation of some volatile oil components containing olefins need further study.Conclusion:This study indicates that^(60)Co-γirradiation is a stable method for sterilization of Chuanxiong Rhizoma.It’s also provide a reference for the establishment of irradiation standards for Chuanxiong Rhizoma and other aromatic medicinal plants.展开更多
BACKGROUND Intestinal colic is a common complication in patients who have undergone radical surgery for colorectal cancer.Traditional Chinese medicine has advantages,including safety and stability,for the treatment of...BACKGROUND Intestinal colic is a common complication in patients who have undergone radical surgery for colorectal cancer.Traditional Chinese medicine has advantages,including safety and stability,for the treatment of intestinal colic.Lamp irra-diation for abdominal ironing has been applied in the treatment of many gas-trointestinal diseases.Purple gromwell oil has the effects of clearing heat,cooling blood,reducing swelling,and relieving pain.RESULTS The general effective rate in the observation group was 95.00%,which was significantly higher than that in the control group(86.67%,P<0.05).Before treatment,there was no significant difference in the duration of symptoms between the groups(P>0.05).After 1,2,3,and 4 d of treatment,the duration of symptoms in both groups were decreased,and the duration in the observation group was significantly lower than that in the control group(96.54±9.57 vs 110.45±11.23,87.26±12.07 vs 104.44±11.68,80.45±16.21 vs 99.44±14.95,73.18±15.58 vs 92.17±14.20;P<0.05).After 1,3,5,and 7 d of treatment,the NRS scores in both groups were decreased,and the NRS scores in the observation group were significantly lower than those in the control group(3.56±0.41 vs 4.04±0.58,3.07±0.67 vs 3.74±1.02,2.52±0.76 vs 3.43±0.85,2.03±0.58 vs 3.03±0.82;P<0.05).There was no significant difference in the rate of adverse reaction occurrence between the groups(P>0.05).CONCLUSION The use of lamp irradiation combined with purple gromwell oil gauze in patients with intestinal colic after radical surgery for colorectal cancer can reduce symptom duration,alleviate intestinal colic,and improve treatment efficacy,and this approach is safe.It is worth promoting the use of this treatment in clinical practice.展开更多
In recent years, the harmful effects of blue light (400 - 500 nm) as a component of visible light (400 - 700 nm) have increasingly gained attention of science, industry, and consumers. To date, only a few in vivo test...In recent years, the harmful effects of blue light (400 - 500 nm) as a component of visible light (400 - 700 nm) have increasingly gained attention of science, industry, and consumers. To date, only a few in vivo test methods for measuring the effects of blue light on the skin have been described. A direct measurement method that can detect the immediate effects of blue light on the epidermal permeability barrier (EPB) is still lacking. In this study, we present a new methodological approach that can be used to investigate both the protective and regenerative effects of cosmetic products on the EPB after blue light irradiation. In a study with 14 female volunteers, it was investigated whether the regular application of an O/W emulsion (day cream) can strengthen and protect the epidermal barrier against damaging blue light radiation of 60 J/cm2 (protective study design) and also whether a disruption of the epidermal barrier caused by blue light radiation is restored faster and better by the regular application of another O/W emulsion (night cream) than in product-untreated skin (regenerative study design). The two O/W emulsions are different in plant oil, active ingredient composition and texture. The seven-day treatment with the day cream initially led to a significant increase in the normalized lipid lamellae length in the intercellular space, whereas the irradiation with blue light after 24 hours led to a significant decrease in the lipid lamellae length in the untreated test area, but not in the area previously treated with the product. Regarding the regenerative study design, a two-day treatment with the night cream was able to restore a blue-light-induced decrease in lipid lamellae length in the intercellular space. In summary, with the study designs presented here, the protective and regenerative effect of two cosmetic products could be demonstrated for the first time on the integrity of the EPB after blue light irradiation and the data showed that the Lipbarvis® method is suitable for investigating the damaging effects of blue light on the EPB in vivo.展开更多
[Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activi- ties and lipid peroxidation of sweet sorghum. [Method...[Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activi- ties and lipid peroxidation of sweet sorghum. [Method] The dry seeds were irradiated by '2(36. heavy ion beams with absorbed doses: 0, 40, 80, 120, 160 and 200 Gy, respectively. Then, the seed germination potential, survival rate, antioxidant enzyme activities and lipid peroxidation of sweet sorghum were measured. [Result] Heavy-ion beams irradiation exhibited different influence on germination potential and survival rates. Germination rate showed a downward trend, but the corresponding survival curve of seedlings was saddle-shaped. The activities of SOD, POD, CAT and ASA- POD changed in different trends as well. The MDA content rose toward increasing irradiation dose, suggesting that high dose of heavy-ion beams irradiation enhanced the damage to membrane of sweet sorghum seedlings. [Conclusion] After being irra- diated, germination potential and survival rates of sweet sorghum were decreased, and antioxidant enzymes activity changed greatly. This study laid the basis for fur- ther work on breeding and improvement of sweet sorghum irradiated by ,^(12)C^(6+) heavy ion beams.展开更多
Silver nanoclusters(AgNCs)are a new type of nanomaterials with similar properties to molecules and unique applications.The applications of AgNCs can be significantly expanded by combining them with different matrix ma...Silver nanoclusters(AgNCs)are a new type of nanomaterials with similar properties to molecules and unique applications.The applications of AgNCs can be significantly expanded by combining them with different matrix materials to obtain AgNC composites.Using irradiation techniques,we developed a simple two-step method for preparing silver nanocluster composites.First,polyacrylic acid(PAA)chains were grafted onto the surface of a PE film as templates(PE-g-PAA).Subsequently,silver ions were reduced in situ on the surface of the template material to obtain the AgNC composites(AgNCs@PE-g-PAA).The degree of AgNC loading on the composite film was easily controlled by adjusting the reaction conditions.The loaded AgNCs were anchored to the carboxyl groups of the PAA and wrapped in the graft chain.The particle size of the AgNCs was only 4.38±0.85 nm,with a very uniform particle size distribution.The AgNCs@PE-g-PAA exhibited fluorescence characteristics derived from the AgNCs.The fluorescence of the AgNCs@PE-g-PAA was easily quenched by Cr^(3+)ions.The composite can be used as a fluorescence test paper to realize visual detection of Cr^(3+).展开更多
Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely h...Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting.展开更多
Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that...Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that can be effectively treated as photon fluxes.The exchange of photons can induce photonuclear and two-photon interactions and excite ions.This excitation of the ions results in Coulomb dissociation with the emission of photons,neutrons,and other particles.Additionally,the electromagnetic fields generated by the ions can be sufficiently strong to enforce mutual interactions between the two colliding ions.Consequently,the two colliding ions experience an electromagnetic force that pushes them in opposite directions,causing a back-to-back correlation in the emitted neutrons.Using a Monte Carlo simulation,we qualitatively demonstrate that the above electromagnetic effect is large enough to be observed in UPCs,which would provide a clear means to study strong electromagnetic fields and their effects.展开更多
The effects of C ion irradiation on multilayer ReSe2flakes are studied by utilizing different kinds of technologies. The domain sizes, thickness, morphologies of the multilayer ReSe2flakes on the Al2O3substrates befor...The effects of C ion irradiation on multilayer ReSe2flakes are studied by utilizing different kinds of technologies. The domain sizes, thickness, morphologies of the multilayer ReSe2flakes on the Al2O3substrates before and after 1.0-MeV C ion irradiation with different fluence rates are studied by atomic force microscope and scanning electron microscopy. The atomic vibrational spectra of multilayer ReSe2flakes are detected by micro-Raman spectra. The redshifts of the Raman modes after 1.0-MeV C ion irradiation are observed from the micro-Raman spectra. The elemental compositions and bonding configurations of the multilayer ReSe2samples before and after irradiation processes are characterized by x-ray photoelectron spectroscopy. The structural properties are also investigated by x-ray diffraction, and it is concluded that after 1.0-MeV C ion irradiation process, multilayer ReSe2samples continue to grow on Al2O3substrates, the increase of crystallite size also reveals that the crystallinity is improved with the increase of the layer number after 1.0-MeV C ion irradiation.展开更多
基金Project supported by the Key Project of the National Natural Science Foundation of China(Grant No.11032010)the National Natural Science Foundationof China(Grant Nos.51072171,61274107,61176093,and 11275163)+6 种基金the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT1080)the 973 Program,China(Grant No.2012CB326404)the Key Project of Natural Science Foundation of Hunan Province,China(Grant No.13JJ2023)the Key Project of Scientific Research Fund of Education Department of Hunan Province,China(Grant No.12A129)the Innovation Foundation of Hunan Province of China for Postgraduate,China(Grant No.CX2013B261)the Doctoral Program of Higher Education of China(GrantNo.20104301110001)the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China
文摘The single event effect in ferroelectric-gate field-effect transistor (FeFET) under heavy ion irradiation is investigated in this paper. The simulation results show that the transient responses are much lower in a FeFET than in a conventional metal-oxide-semiconductor field-effect transistor (MOSFET) when the ion strikes the channel. The main reason is that the polarization-induced charges (the polarization direction here is away from the silicon surface) bring a negative surface po- tential which will affect the distribution of carders and charge collection in different electrodes significantly. The simulation results are expected to explain that the FeFET has a relatively good immunity to single event effect.
文摘The world is facing severe challenges of sustainable development, which requires the joint effort of the globalscience community to solve. As China continues to grow at a very impressive pace, the state appears acutely awareof the need to expand the Chinese science and technology portfolio to help fuel its growth and keep it sustainable.China also needs to continue on the path to innovations and modernization, focusing on endogenous growth torealize full, coordinated, and sustainable development.
基金Supported by International Atomic Energy Agency under Contract No.10637
文摘Heavy-ion irradiation is commonly used to study radiation damage of high level radioactive waste (HLW) forms, but S ion was never used before. In this investigation, 100 MeV 32S ions produced by tandem accelerator was used to study radiation effects on pyrochlore-rich synroc which contained simulated actinides. The amorphization and amorphous doses were determined by X-ray diffractometer (XRD) and transmission electron microscopy /select area electron diffraction (TEM/SAED). The vacancy defects induced by heavy-ion irradiation were characterized by using positron annihilation technique (PAT). The experimental results show that the amorphous dose is 0.5 dpa, the defects produced by heavy-ion irradiation are mainly voids, and irradiation could continue to intensify the vacancy defects even after the amorphous dose was reached.
基金National Magnetic Confinement Fusion Science Program of China(No.2014GB112006)National Natural Science Foundation of China(No.11305204)Natural Science Foundation of Anhui Province of China(No.1508085SME220)
文摘Radio genetic therapy which combines gene therapy with radiotherapy has shown promising results in cancer treatment. In this study, an oncolytic adenovirusbased gene therapy system regulated by radiation was constructed to improve the cancer curative effect. This gene therapy system incorporated the radiation-inducible early growth response gene(Egr-1) promoter and the anticancer gene tumor necrosis factor-related apoptosis-inducing ligand(TRAIL). To confirm the antitumor effect of Ad-ET combined with^12C^(6+)tion irradiation, the survival and apoptosis fraction of tumor cells HT1080 and normal cells MRC-5 in combination treatment were detected by CCK-8 assay and FACS analysis. Then the expression levels of TRAIL gene and protein were tested by real-time PCR and western blotting. The results show that^12C^(6+)tion irradiation could induce cell growth inhibition and apoptosis by activating the TRAIL gene expression in tumor cells, while exhibiting no obvious toxicity to the normal lung cell line MRC-5. Theresults also demonstrate that use of an oncolytic adenovirusbased radiation-inducible gene therapy system together with^12C^(6+)tion irradiation could cause synergistic antitumor effect specifically in tumor cells but not in normal cells. The results indicate that the novel radio genetic therapy could potentiate radiation treatment by improving the safety and efficiency of monotherapy, and provide theoretical support for clinical application of combination treatment.
基金supported by the National Natural Science Foundation of China(Nos.12022515 and 11975304)the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.Y202063)。
文摘The synergistic damage effect of irradiation and corrosion of reactor structural materials has been a prominent research focus.This paper provides a comprehensive review of the synergistic effects on the third-and fourth-generation fission nuclear energy structural materials used in pressurized water reactors and molten salt reactors.The competitive mechanisms of multiple influencing factors,such as the irradiation dose,corrosion type,and environmental temperature,are summarized in this paper.Conceptual approaches are proposed to alleviate the synergistic damage caused by irradiation and corrosion,thereby promoting in-depth research in the future and solving this key challenge for the structural materials used in reactors.
基金supported by the Fundamental Research Funds for the Central University(No.JZ2023HGTA0182)Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)。
文摘Because of their economy and applicability,high-power thyristor devices are widely used in the power supply systems for large fusion devices.When high-dose neutrons produced by deuterium–tritium(D–T)fusion reactions are irradiated on a thyristor device for a long time,the electrical characteristics of the device change,which may eventually cause irreversible damage.In this study,with the thyristor switch of the commutation circuit in the quench protection system(QPS)of a fusion device as the study object,the relationship between the internal physical structure and external electrical parameters of the irradiated thyristor is established.Subsequently,a series of targeted thyristor physical simulations and neutron irradiation experiments are conducted to verify the accuracy of the theoretical analysis.In addition,the effect of irradiated thyristor electrical characteristic changes on the entire QPS is studied by accurate simulation,providing valuable guidelines for the maintenance and renovation of the QPS.
基金supported by National Natural Science Foundation of China(Grant Nos.62274143 and U22A2075)Hangzhou Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(Grant No.LHZSD24E020001)+3 种基金Partial support was provided by Leading Innovative and Entrepreneur Team Introduction Program of Hangzhou(Grant No.TD2022012)Fundamental Research Funds for the Central Universities(Grant No.226-2022-00200)Natural Science Foundation of China for Innovative Research Groups(Grant No.61721005)the Open Fund of Zhejiang Provincial Key Laboratory of Wide Bandgap Semiconductors。
文摘4H silicon carbide(4H-SiC)has gained a great success in high-power electronics,owing to its advantages of wide bandgap,high breakdown electric field strength,high carrier mobility,and high thermal conductivity.Considering the high carrier mobility and high stability of 4H-SiC,4H-SiC has great potential in the field of photoelectrochemical(PEC)water splitting.In this work,we demonstrate the irradiation-resistant PEC water splitting based on nanoporous 4H-SiC arrays.A new two-step anodizing approach is adopted to prepare 4H-SiC nanoporous arrays with different porosity,that is,a constant low-voltage etching followed by a pulsed high-voltage etching.The constant-voltage etching and pulsed-voltage etching are adopted to control the diameter of the nanopores and the depth of the nanoporous arrays,respectively.It is found that the nanoporous arrays with medium porosity has the highest PEC current,because of the enhanced light absorption and the optimized transportation of charge carriers along the walls of the nanoporous arrays.The performance of the PEC water splitting of the nanoporous arrays is stable after the electron irradiation with the dose of 800 and 1600 k Gy,which indicates that 4H-SiC nanoporous arrays has great potential in the PEC water splitting under harsh environments.
基金supported by the National Natural Science Foundation of China(Grant Nos.51871222,52171021,and 51801214)Liaoning Provincial Natural Science Foundation(2019-MS-335)the research fund of SYNL。
文摘In-situ electron irradiation and aging are applied to introduce high-density precipitates in an Mg-10Gd-3Y-1Zn-0.5Zr(GWZ1031K,wt.%)alloy to improve the hardness.The results show that the hardness of the Mg alloy after irradiation for 10 h and aging for 9 h at 250℃ is 1.64 GPa,which is approximately 64% higher than that of the samples before being treated.It is mainly attributed to γ'precipitates on the basal plane after irradiation and the high-density nanoscale β'precipitates on the prismatic plane after aging,which should be closely related to the irradiation-induced homogenous clusters.The latter plays a key role in precipitation hardening.This result paves a way to improve the mechanical properties of metallic materials by tailoring the precipitation through irradiation and aging.
基金supported by the National Natural Science Foundation of China(42272202 and 52264001)the Yunnan Fundamental Research Projects(202201AT070144)+1 种基金the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWRQNBJ-2019-164)Training Programmes of Innovation and Entrepreneurship for Undergraduates of Yunnan Province(S202210674128).
文摘In order to comprehend the applicability of microwave irradiation for recovering coalbed methane,it is necessary to evaluate the microwave irradiation-induced alterations in coals with varying levels of metamorphism.In this work,the carbon molecular sieve combined with KMnO_(4)oxidation was selected to fabricate carbon molecular sieve with diverse oxidation degrees,which can serve as model substances toward coals.Afterwards,the microwave irradiation dependences of pores,functional groups,and highpressure methane adsorption characteristics of model substances were studied.The results indicated that microwave irradiation causes rearrangement of oxygen-containing functional groups,which could block the micropores with a size of 0.40-0.60 nm in carbon molecular sieve;meanwhile,naphthalene and phenanthrene generated by macro-molecular structure pyrolysis due to microwave irradiation could block the micropores with a size of 0.70-0.90 nm.These alterations in micropore structure weaken the saturated methane adsorption capacity of oxidized carbon molecular sieve by 2.91%-23.28%,suggesting that microwave irradiation could promote methane desorption.Moreover,the increased mesopores found for oxidized carbon molecular sieve after microwave irradiation could benefit CH4 diffusion.In summary,the oxidized carbon molecular sieve can act as model substances toward coals with different ranks.Additionally,microwave irradiation is a promising technology to enhance coalbed methane recovery.
基金supported by the National Science Foundation of China(No.12347103)the Fundamental Research Funds for the Central Universities(No.226-2022-00216)。
文摘Space objects such as spacecraft or missiles may be exposed to intense X-rays in outer space,leading to severe damage.The reinforcement of these objects to reduce the damage caused by X-ray irradiation is a significant concern.The blow-off impulse(BOI)is a crucial physical quantity for investigating material damage induced by X-ray irradiation.However,the accurate calculation of BOI is challenging,particularly for large deformations of materials with complex configurations.In this study,we develop a novel two-dimensional particle-in-cell code,Xablation2D,to calculate BOIs under far-field X-ray irradiation.This significantly reduces the dependence of the numerical simulation on the grid shape.The reliability of this code is verified by simulation results from open-source codes,and the calculated BOIs are consistent with the experimental and analytical results.
基金supported by National Natural Science Foundation of China(Nos.12305224,U23B2099 and 11975065)the Natural Science Foundation of Liaoning Province(No.2021-BS-223)+1 种基金the Liaoning Provincial Department of Education Youth Fund Project(No.LJKQZ20222309)supports from the National Laboratory of Heavy-ion Research Facility(HIRFL)in the Institute of Modern Physics in Lanzhou,China.
文摘In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed that with the irradiation dose increased,the tensile micro-strain increased,nano-hardness increased from 7.11 GPa to 7.90 GPa and 8.62 GPa,Young’s modulus increased,and H3/E2 increased which indicating that the plastic deformability decreased in crystalline W.Under the same irradiation conditions,the Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG still maintained the amorphous structure and became more disordered despite the longer range and stronger displacement damage of Ne ions in Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG than in crystalline W.Unlike the irradiation hardening and embrittlement behavior of crystalline W,Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG showed the gradual decrease in hardness from 6.02 GPa to 5.89 GPa and 5.50 GPa,the decrease in modulus and the increase in plastic deformability with the increasing dose.Possibly,the irradiation softening and toughening phenomenon of Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG could provide new ideas for the design of nuclear materials.
文摘BACKGROUND Lumbar radiculopathy spondylosis is a relatively common orthopedic disease with a high incidence rate.It most commonly occurs in the lumbar 4-5 and lumbar 5-sacral 1 vertebrae,which account for approximately 95%of cases.It mostly occurs in people aged 30-50 years old and greatly affects their quality of life.AIM To determine the effect of triple-voltage acupuncture combined with helium-neon laser irradiation on the quality of care and improvement of symptoms in patients with lumbar radiculopathy spondylolisthesis.METHODS In this study,we selected 120 patients with lumbar radiculopathy spondylosis who were treated at our hospital between June 2019 to June 2020.The patients were divided into control and observation groups according to the random number table method,with 60 patients in each group.Patients in the observation group were treated with three-volt moxibustion combined with helium-neon laser irradiation,and those in the control group were treated with lumbar traction.After 1 month of treatment,the lumbar pain scores,lumbar spine motor functions,clinical treatment effects,and nursing satisfaction of the two groups were compared.RESULTS The results showed that acupuncture combined with laser irradiation significantly improved the patients'clinical symptoms,i.e.,reduced their low back pain,significantly lower numerical rating scale pain scores in the observation group than in the control group,and better lumbar spine motility than in the control group,compared to lumbar traction.In addition,they were cared for.The treatment effectiveness rate of the observation group was 95.5%,which was significantly higher than that of the control group(81.67%).Satisfaction with care was higher than 90 points in both groups,but the difference was not statistically significant.CONCLUSION Our study provides a clinical rationale for the future treatment of patients with lumbar spine disease.However,further extensive research is needed for validation.
基金This work was financially supported by Nationalities Introduces Talented Research Startup Project of Southwest Minzu University(RQD2021055)Sichuan Science and Technology Program(R22ZYZF0005)Innovative Scientific Research Project for Postgraduates of Southwest Minzu University(ZD2022798).
文摘Background:In order to clarify the inmpat ofγirradiation on the chemical composition of traditional Chinese medicine,this paper carefully choosed Chuanxiong Rhizoma to carry on a demonstration study.Methods:Through a meticulous assessment,a comprehensive comparison was made between the irradiated and unirradiated Chuanxiong Rhizoma samples.The property characteristics were investigated by colorimeter and electronic nose.The changes in chemical structures and contents was analyzed by fourier infrared spectroscopy,high performance liquid chromatography and fingerprinting.In a quest to uncover the presence of any new radiolysis products,cutting-edge techniques like ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry and gas chromatography-mass spectrometry were employed.Moreover,the difference of antioxidant activity were investigated.Results:The irradiation doses within 12 kGy had no significant effects on the content of the main chemical components,characteristics and in vitro antioxidant activity of Chuanxiong Rhizoma,while changes in some functional groups and degradation of some volatile oil components containing olefins need further study.Conclusion:This study indicates that^(60)Co-γirradiation is a stable method for sterilization of Chuanxiong Rhizoma.It’s also provide a reference for the establishment of irradiation standards for Chuanxiong Rhizoma and other aromatic medicinal plants.
文摘BACKGROUND Intestinal colic is a common complication in patients who have undergone radical surgery for colorectal cancer.Traditional Chinese medicine has advantages,including safety and stability,for the treatment of intestinal colic.Lamp irra-diation for abdominal ironing has been applied in the treatment of many gas-trointestinal diseases.Purple gromwell oil has the effects of clearing heat,cooling blood,reducing swelling,and relieving pain.RESULTS The general effective rate in the observation group was 95.00%,which was significantly higher than that in the control group(86.67%,P<0.05).Before treatment,there was no significant difference in the duration of symptoms between the groups(P>0.05).After 1,2,3,and 4 d of treatment,the duration of symptoms in both groups were decreased,and the duration in the observation group was significantly lower than that in the control group(96.54±9.57 vs 110.45±11.23,87.26±12.07 vs 104.44±11.68,80.45±16.21 vs 99.44±14.95,73.18±15.58 vs 92.17±14.20;P<0.05).After 1,3,5,and 7 d of treatment,the NRS scores in both groups were decreased,and the NRS scores in the observation group were significantly lower than those in the control group(3.56±0.41 vs 4.04±0.58,3.07±0.67 vs 3.74±1.02,2.52±0.76 vs 3.43±0.85,2.03±0.58 vs 3.03±0.82;P<0.05).There was no significant difference in the rate of adverse reaction occurrence between the groups(P>0.05).CONCLUSION The use of lamp irradiation combined with purple gromwell oil gauze in patients with intestinal colic after radical surgery for colorectal cancer can reduce symptom duration,alleviate intestinal colic,and improve treatment efficacy,and this approach is safe.It is worth promoting the use of this treatment in clinical practice.
文摘In recent years, the harmful effects of blue light (400 - 500 nm) as a component of visible light (400 - 700 nm) have increasingly gained attention of science, industry, and consumers. To date, only a few in vivo test methods for measuring the effects of blue light on the skin have been described. A direct measurement method that can detect the immediate effects of blue light on the epidermal permeability barrier (EPB) is still lacking. In this study, we present a new methodological approach that can be used to investigate both the protective and regenerative effects of cosmetic products on the EPB after blue light irradiation. In a study with 14 female volunteers, it was investigated whether the regular application of an O/W emulsion (day cream) can strengthen and protect the epidermal barrier against damaging blue light radiation of 60 J/cm2 (protective study design) and also whether a disruption of the epidermal barrier caused by blue light radiation is restored faster and better by the regular application of another O/W emulsion (night cream) than in product-untreated skin (regenerative study design). The two O/W emulsions are different in plant oil, active ingredient composition and texture. The seven-day treatment with the day cream initially led to a significant increase in the normalized lipid lamellae length in the intercellular space, whereas the irradiation with blue light after 24 hours led to a significant decrease in the lipid lamellae length in the untreated test area, but not in the area previously treated with the product. Regarding the regenerative study design, a two-day treatment with the night cream was able to restore a blue-light-induced decrease in lipid lamellae length in the intercellular space. In summary, with the study designs presented here, the protective and regenerative effect of two cosmetic products could be demonstrated for the first time on the integrity of the EPB after blue light irradiation and the data showed that the Lipbarvis® method is suitable for investigating the damaging effects of blue light on the EPB in vivo.
基金Supported by Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX2-EW-N05)~~
文摘[Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activi- ties and lipid peroxidation of sweet sorghum. [Method] The dry seeds were irradiated by '2(36. heavy ion beams with absorbed doses: 0, 40, 80, 120, 160 and 200 Gy, respectively. Then, the seed germination potential, survival rate, antioxidant enzyme activities and lipid peroxidation of sweet sorghum were measured. [Result] Heavy-ion beams irradiation exhibited different influence on germination potential and survival rates. Germination rate showed a downward trend, but the corresponding survival curve of seedlings was saddle-shaped. The activities of SOD, POD, CAT and ASA- POD changed in different trends as well. The MDA content rose toward increasing irradiation dose, suggesting that high dose of heavy-ion beams irradiation enhanced the damage to membrane of sweet sorghum seedlings. [Conclusion] After being irra- diated, germination potential and survival rates of sweet sorghum were decreased, and antioxidant enzymes activity changed greatly. This study laid the basis for fur- ther work on breeding and improvement of sweet sorghum irradiated by ,^(12)C^(6+) heavy ion beams.
基金supported by the Gansu Natural Science Foundation (Nos.20JR10RA778 and 20JR10RA777)。
文摘Silver nanoclusters(AgNCs)are a new type of nanomaterials with similar properties to molecules and unique applications.The applications of AgNCs can be significantly expanded by combining them with different matrix materials to obtain AgNC composites.Using irradiation techniques,we developed a simple two-step method for preparing silver nanocluster composites.First,polyacrylic acid(PAA)chains were grafted onto the surface of a PE film as templates(PE-g-PAA).Subsequently,silver ions were reduced in situ on the surface of the template material to obtain the AgNC composites(AgNCs@PE-g-PAA).The degree of AgNC loading on the composite film was easily controlled by adjusting the reaction conditions.The loaded AgNCs were anchored to the carboxyl groups of the PAA and wrapped in the graft chain.The particle size of the AgNCs was only 4.38±0.85 nm,with a very uniform particle size distribution.The AgNCs@PE-g-PAA exhibited fluorescence characteristics derived from the AgNCs.The fluorescence of the AgNCs@PE-g-PAA was easily quenched by Cr^(3+)ions.The composite can be used as a fluorescence test paper to realize visual detection of Cr^(3+).
文摘Wind and solar energy are two popular forms of renewable energy used in microgrids and facilitating the transition towards net-zero carbon emissions by 2050.However,they are exceedingly unpredictable since they rely highly on weather and atmospheric conditions.In microgrids,smart energy management systems,such as integrated demand response programs,are permanently established on a step-ahead basis,which means that accu-rate forecasting of wind speed and solar irradiance intervals is becoming increasingly crucial to the optimal operation and planning of microgrids.With this in mind,a novel“bidirectional long short-term memory network”(Bi-LSTM)-based,deep stacked,sequence-to-sequence autoencoder(S2SAE)forecasting model for predicting short-term solar irradiation and wind speed was developed and evaluated in MATLAB.To create a deep stacked S2SAE prediction model,a deep Bi-LSTM-based encoder and decoder are stacked on top of one another to reduce the dimension of the input sequence,extract its features,and then reconstruct it to produce the forecasts.Hyperparameters of the proposed deep stacked S2SAE forecasting model were optimized using the Bayesian optimization algorithm.Moreover,the forecasting performance of the proposed Bi-LSTM-based deep stacked S2SAE model was compared to three other deep,and shallow stacked S2SAEs,i.e.,the LSTM-based deep stacked S2SAE model,gated recurrent unit-based deep stacked S2SAE model,and Bi-LSTM-based shallow stacked S2SAE model.All these models were also optimized and modeled in MATLAB.The results simulated based on actual data confirmed that the proposed model outperformed the alternatives by achieving an accuracy of up to 99.7%,which evidenced the high reliability of the proposed forecasting.
基金This work is supported in part by the National Key Research and Development Program of China(Nos.2022YFA1604900)the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030008)+3 种基金the National Natural Science Foundation of China(Nos.12275053,12025501,11890710,11890714,12147101,12075061,and 12225502)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34030000)Shanghai National Science Foundation(No.20ZR1404100)STCSM(No.23590780100).
文摘Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that can be effectively treated as photon fluxes.The exchange of photons can induce photonuclear and two-photon interactions and excite ions.This excitation of the ions results in Coulomb dissociation with the emission of photons,neutrons,and other particles.Additionally,the electromagnetic fields generated by the ions can be sufficiently strong to enforce mutual interactions between the two colliding ions.Consequently,the two colliding ions experience an electromagnetic force that pushes them in opposite directions,causing a back-to-back correlation in the emitted neutrons.Using a Monte Carlo simulation,we qualitatively demonstrate that the above electromagnetic effect is large enough to be observed in UPCs,which would provide a clear means to study strong electromagnetic fields and their effects.
基金supported by the National Natural Science Foundation of China (Grant Nos. 12105036, 11775135, and 11805108)the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2020QA088 and ZR2021QA074)+1 种基金the Taishan Scholars Program of Shandong Province, China (Grant No. tsqn201812104)the State Key Laboratory of Nuclear Physics and Technology at Peking University, China。
文摘The effects of C ion irradiation on multilayer ReSe2flakes are studied by utilizing different kinds of technologies. The domain sizes, thickness, morphologies of the multilayer ReSe2flakes on the Al2O3substrates before and after 1.0-MeV C ion irradiation with different fluence rates are studied by atomic force microscope and scanning electron microscopy. The atomic vibrational spectra of multilayer ReSe2flakes are detected by micro-Raman spectra. The redshifts of the Raman modes after 1.0-MeV C ion irradiation are observed from the micro-Raman spectra. The elemental compositions and bonding configurations of the multilayer ReSe2samples before and after irradiation processes are characterized by x-ray photoelectron spectroscopy. The structural properties are also investigated by x-ray diffraction, and it is concluded that after 1.0-MeV C ion irradiation process, multilayer ReSe2samples continue to grow on Al2O3substrates, the increase of crystallite size also reveals that the crystallinity is improved with the increase of the layer number after 1.0-MeV C ion irradiation.